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A B S T R A C T

Programmable Logic Computers, or PLC, are industry dedicated com-
puters built with the aim to control and automate machines and
processes. These processes are usually critical ones, where the oc-
currence of any error endangers the equipments, as well as human
and environmental safety. Thereby, it is of extreme importance the
use of formal techniques to ensure safety, quality and efficiency to
the controlled systems. The Ladder Diagram language, or LD, is the
most used PLC programming language. It has a graphical structure
which greatly difficults error detection and code modification, which
increases the necessity of formal methods.

In this work we aim to develop a tool for performing the formal
verification of Ladder Diagram Programs, through the Reinterpretation
approach and following the Model-Driven Engineering methodology.
Two chains have been built. The first one translates LD programs
into formal models. The FIACRE language has been chosen as formal
representation, due to its better data manipulation characteristic. The
second chain allows to write the system specifications and, with that,
to obtain formal properties, which can be verified in the FIACRE
models resulting from the first chain. The verification is performed by
the Model-checking technique. A case study is presented for all the
steps of both tool chains.

Keywords: Ladder Diagram, Formal Verification, MDE, FIACRE, Model-
checking.
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R E S U M O E S T E N D I D O

Computadores Lógicos Programáveis, ou CLP, são computadores
dedicados à indústria, construídos especialmente para resistir a um
ambiente inóspito e realizar o controle e a sincronização de máquinas
e processos. Processos estes que são, grande parte das vezes, críticos,
cujos erros podem levar a falhas e comprometer equipamentos, pro-
dutos e, nos piores casos, a saúde do meio ambiente e do homem. O
uso de métodos formais de verificação é, portanto, de extrema im-
portância para garantir segurança, qualidade e correção aos sistemas
controlados.

A linguagem de programação de CLP mais usada até hoje é o
Ladder Diagram, ou LD. Embasada na lógica de relés, ela apresenta
uma estrutura gráfica que dificulta muito o processo de detecção de
erros, fator que agrava a necessidade de métodos formais para garantir
que o controle corresponda às expectativas.

O presente trabalho tem como objetivo construir uma ferramenta
que permita aplicar a abordagem de Reinterpretação para proceder
à Verificação em programas LD. A Reinterpretação considera a di-
ficuldade em escrever uma lógica de controle diretamente em uma
linguagem formal, uma vez que os programadores necessitariam ter
domínio em modelagem e técnicas de verificação formal. Ela pres-
supõe a transformação do modelo informal – neste caso, do programa
LD – em um formal.

Apresentamos aqui duas cadeias de transformação. Para o desen-
volvimento de ambas, seguiu-se a metodologia da Engenharia orien-
tada a Modelos, ou MDE – Model-Driven Engineering.

A primeira cadeia trata-se de um aperfeiçoamento de um trabalho
de Iniciação Científica PIBIC-CNPQ, realizado pela mesma estudante
envolvida neste projeto. Ela permite a translação automática de pro-
gramas Ladder Diagram em modelos FIACRE – uma linguagem usada
para representação formal de sistemas que, devido à sua estrutura,
permite uma melhor manipulação de dados. Mais especificamente,
essa primeira cadeia translada um programa LD em dois modelos
FIACRE. Um deles representa um sistema onde o programa LD con-
trola uma planta genérica – cujas variáveis interagem entre si somente
através do CLP – e propriedades a serem verificadas sobre ele. Estas
propriedades se referem à boa escrita do programa LD. O segundo
modelo FIACRE gerado representa também um sistema controlado
pelo programa de CLP; porém, desta vez, falta a modelagem dos pro-
cessos da planta – tarefa que ainda necessita ser feita "manualmente" –
bem como a escrita de propriedades – estas, por sua vez, referentes
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ao sistema real controlado, i.e., às especificações do sistema – que são
geradas pela segunda cadeia elaborada.

A segunda cadeia construída auxilia a escrita de especificações de
sistemas através da elaboração de uma Linguagem de Domínio Especí-
fico, ou DSL, chamada BPL – Business Property Language – e permite
sua transcrição automática para propriedades formais, usando uma
extensão da linguagem FIACRE. Essas propriedades obtidas automati-
camente devem ser unidas ao modelo do sistema real – resultante da
primeira cadeia.

Utilizando as duas cadeias de translação elaboradas neste projeto,
pode-se obter modelos dos sistemas controlados e as propriedades
a serem verificadas, ambos escritos de uma maneira formalizada, a
fim de proceder a técnica de Model-Checking através de ferramentas
preexistentes, como o TINA. Neste documento, um caso de uso é
abordado, permitindo detalhar os passos e os resultados das duas
cadeias de translação. Por fim, são apresentadas conclusões acerca do
projeto e as perpectivas de trabalhos futuros.
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1
I N T R O D U C T I O N

This document introduces and describes the work developed in the
context of the discipline DAS5511 – Final Project – of the Control
and Automation Engineering Course, between September 2011 and
February 2012. This project has been realized at the IRIT laboratory, in
Toulouse, France.

The aim of this discipline is to put in practice the concepts learned
in class, giving the student the chance to realize what a project is and
of which phases it consists. Therefore, this is also an opportunity to
improve the students’ skills, stimulating their autonomy as well as
their teamwork ability.

The project presented here consists of a chain to allow the for-
mal verification of Ladder Diagram programs, including the system
modeling and the writing of its properties. It has been built in the
Eclipse Environment1, using the Model-Driven Methodology, MDE.
This document is organized as follows:

• Chapter 2: Project – presents the project’s context, its motivation
and objectives, the laboratory where the work has been done
and the followed methodology.

• Chapter 3: Business Domain – this chapter has as goal to in-
troduce the concepts used in this work, but from the point of
view of technicians that do not have a ground in formal meth-
ods. It presents what are PLCs, the IEC 61311-3 Standard and
the Ladder Diagram language, as well as what are the desired
properties of a system that is controlled by a PLC. A case study
and its specifications are introduced.

• Chapter 4: Formal Domain – here are shown the formal concepts
that have been used in this project. There is a brief foundation
about the FIACRE language and its extension, and the TINA ver-
ification tool. The case study presented in the previous chapter
is used now as an example for FIACRE properties.

• Chapter 5: Development and Preliminary Results – the longest
chapter, it treats about the project’s implementations. A previous
work is presented, the new architecture is shown and its parts
are described.

• Chapter 6: Final Results – the developed work is reviewed and
its results are given through the case study cited above.

1 http://www.eclipse.org/
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2 introduction

• Chapter 7: Conclusion Work – here, we give the final comments
about this project, and what are its perspectives.



2
P R O J E C T

2.1 context

Programmable Logic Computers, or PLC, are industry dedicated com-
puters, built with the aim to control and automate machines and
processes. Since their advent they have been essential for the Automa-
tion Industry and have promoted the development of new fields of
research. Due to this wide use, a necessity of a norm emerged, result-
ing in the IEC 61131-3 Standard [5]. This Standand describes four PLC
programming languages, among which is the Ladder Diagram, or LD,
still the most largely used in the industry.

The Ladder Diagram language has a graphical structure which
greatly difficults error detection and code modification, since the
logical sequence of the programs is masked by the relay diagrams.
Therefore, error detection in such programs used to be performed
through simulation and tests. Nevertheless, apart from its high cost,
the simulation of all possible states of a system is very time-demanding
and, in most cases, infeasible, depending on the level of complexity.
In other words, simulation is not an exhaustive process and, being so,
does not assure the total absence of errors.

Industrial processes that make use of PLCs are usually critical
processes, where the occurence of any error endangers the equipments,
as well as human and environmental safety. It is of extreme importance
that the programs which control such processes are completely absent
of errors, so as to avoid financial loss, and what’s more, respect the
imposed restrictions so that safety, quality and efficiency are assured.
It is to assure that these specifications are met that formal verification
methods are required.

In general, there are two ways to proceed with formal verification:
Formalization and Reinterpretation [9]. Formalization consists of con-
ceiving the program directly in a formal language and converting it
automatically to PLC code. In this case, two approaches are possible:
Synthesis of a Supervisory Control – obtained from modelling the
system and it’s restrictions – or Verification – performed in the already
controlled system’s model, so that it can be checked if the system
complies with the desired properties.

The second way to validate PLC programs, Reinterpretation – which
is going to be used in this project – takes into account the diffi-
culty of making technicians and engineers change their programming
paradigm, i.e., learn formal methods so that they can write programs
directly in formal languages. This would be impracticable for many
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4 project

programmers, and would make the reuse of the thousands of exist-
ing PLC programs impossible. Thus, in order to avoid this dramatic
change, this method is based on the translation of such existing pro-
grams into formal languages.

Once this Reinterpretation is performed automatically, it is possi-
ble to resort to the Verification approach, mentioned above. In this
approach, the operational description of the system, control included,
is made based on the obtained formal models – usually Transition
Systems, such as Petri Nets, for instance – which represent its behavior.
Concomitantly, the desired properties for this controlled system are
also formally modelled, in most cases by Temporal Logics. This way,
through appropriate techniques and algorithms, and pre-existing tools,
it is possible to decide whether or not the system fulfills the desired
properties.

2.2 motivation

This work is an extension of that developed during the Scientific
Initiation Scholarship, by the same student engaged in this Course-
work Final Project, which was based on [12] and [2]. In this previous
work, referred on [8, 7], a transformation chain has been built, where,
from Ladder Diagram (LD) programs, formal models in the FIACRE
language1 were obtained.

Nevertheless, the difficulty of making technicians and engineers
change their programming paradigm – mentioned in the above topic –
remains, because the PLC programmer still needs to have knowledge
about the formal verification techniques. After all, what the user gets
with the existing translating tool are FIACRE models correspondent to
the LD programs. The writing of the properties to be verified on this
FIACRE model still remains to be done, a task which a programmer is
normally not capable of doing.

This is the reason why we propose here the formulation of a business
language – one that enables the PLC programmer to write properties
he wants to check about his program – and its translation to Temporal
Logic. Thereby, parallel to the transformation from LD to FIACRE,
we shall have the transformation of properties written in this new
business language to Temporal Logic. Finally, the temporal formulas
obtained are going to be verified over the obtained FIACRE models.

2.3 irit laboratory

This project has been developed at the IRIT2 – Informatics Research
Institute of Toulouse – a mixed unit of research that has about 600

members – among them engineers, teachers, researchers, PhD students

1 See Section 4.1
2 http://www.irit.fr/
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and administrative staff – and represents one of the biggest poten-
tials on its area in France. There are 19 teams that work with seven
main topics. One of these teams, named ACADIE – french acronym
to Assistance to the Certification of Distributed and Embedded Ap-
plications – deals with the Safety of Software Development topic. This
project is inserted in this group and the safety criterion is applied to
PLC programs, more specifically, Ladder Diagrams programs.

2.4 objectives

Based on the Motivation topic, given above in Section 2.2, the project
objectives can be listed as below:

• Make a study of the desired properties of PLC controlled sys-
tems, with the aim to capture their most usual form and, thereby,
to elaborate a syntax for their writing. This syntax must be acces-
sible to the technicians that have no ground in formal verification
techniques.

• Implement a "business language" with this syntax, i.e., imple-
ment a Domain Specific Language, or DSL, whose goal is to
write the system specifications.

• Build an automatic chain to connect the system properties writ-
ten with this DSL to properties in a formal representation, which
can be used as entries in a preexisting model-checking verifica-
tion software.

• Reformulate the previous translating tool – mentioned above
in Section 2.2 – to generate, from Ladder Diagram programs,
formal models containing not just the PLC representation, but
also a system modeling. Actually, the aim is to obtain two kinds
of models. The first one will contain a generic system modeling –
where the comportment of the input and output variables are
not dependent, as simple buttonholes and LEDs – to perform
the verification of properties related to the LD program writing.
The second model will contain the real system representation to
verify if the controlled plant has the desired behavior.

• Use a case study of a simple real system to test and present the
developed tool.

The methodology used for reaching these goals is given in the conti-
nuity of this document, as well as the project phases.

2.5 methodology

The project is going to be based on the Model-Driven Methodology, or
MDE [10]. At first, a DSML (Domain Specific Modeling Language) is



6 project

going to be defined to express general and specific properties of PLC
programs. This language is going to be a business language, on a PLC
level, defined through the Xtext3 tool.

From this language, a model transformation chain is going to be
constructed, now with aid from the ATL4 (Atlas Transformation Lan-
guage, still in the MDE context) tool, so that the behavioral properties
in the LTL (Propositional Linear Temporal Logic) format are obtained.

Finally, behavioral properties of PLC programs can be verified in
Ladder Diagram programs, by using the other tool previously men-
tioned5, developed during a Scientific Initiation Project PIBIC-CNPQ
by the same student (entitled Conception of Complex Systems with
Guarantee of Quality of Service). This Translation Tool, as it is called
in this document, has been improved using, once again, the ATL
toolkit, and it allows us to obtain formal FIACRE models from Lad-
der Diagram programs. The verification approach to be utilized is
the Model-Checking (an exhaustive technique that allows to check
whether or not a given property is true and, in the negative case,
provide a counter-example, i.e., a sequence of states, starting from the
initial state, that contradicts the property), through already existing
tools, such as TINA6, for instance.

3 http://www.eclipse.org/Xtext/
4 http://www.eclipse.org/atl/
5 See Motivation, at Section 2.2, and for further details, Section 5.1.
6 http://homepages.laas.fr/bernard/tina/
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3
B U S I N E S S D O M A I N

In this chapter we will present the concepts used in this work, but
from the point of view of technicians that do not have a ground in
formal methods. It presents what are PLCs, the IEC 61311-3 Standard
and the Ladder Diagram language, as well as what are the desired
properties of a system that is controlled by a PLC. A case study and
its specifications are introduced.

3.1 ladder diagram language – ld

3.1.1 IEC 61131-3 Standard

The increase of the use and relevance of PLC in the field of industry
has led to a necessity of an international norm that allows the reuse
of existent PLC programming logics and the ease of learning and
adaptation for the users. For this reason, the IEC 61311-3 Standard
[5] has been created and accepted internationally. Indeed, this norm
represents a third part of a whole standard for describing PLC features
and defines one structuring and four programming languages (two
textual and two graphical languages).

Besides the International Standard, other efforts have arised to help
with software reusability and exchangeability, such as, for example,
the XML TC6 Open Format, by the PLCOpen Organization1. This
allows to save all the data concerning the PLC programs which follow
the IEC Pattern – including graphical informations – in XML files and
to exchange between different editors and compilers. As a partnership,
the Beremiz Organization2 has built an open source environment,
called PLCOpen Editor, that allows the edition of PLC programs as
TC6 XML files. Both of these – the TC6 XML format and the PLCOpen
Editor – have been used in this project, as will be shown later in this
document.

3.1.2 LD Description

The Ladder Diagram Language is one of the two graphical languages
described by the IEC 61131-3 Standard, and it is based in relay logic.
This feature is what puts LD in advantage over the other PLC lan-
guages, because it facilitates adapting already existing relay programs

1 http://plcopen.org/
2 http://www.beremiz.org/
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8 business domain

to PLC programs and, besides, avoids the necessity of changing the
programmers’ paradigm.

However, it is exactly the relay logic based characteristic that confers
the intricate aspect of the LD programs, making it difficult to debug,
modify and analyze the code. Due to this fact we have chosen, among
the existing PLC languages, the Ladder Diagram for our verification
study.

A LD program consists of two vertical rails and a series of horizontal
rungs between them, and can hold simple and complex elements. Each
one of these rungs contains input and output instructions, which allow
to manipulate data according to the configuration. Among the simple
elements we can find the contacts, or relays, and the coils. The relays,
represented graphically by two bars | |, are input instructions and do
not modify the value of their associated program variables, but form
the function to calculate the new value of their rung outputs, by "and"
and "or" boolean operations. The coils, represented by two parentheses
( ), are these outputs, and they, unlike the relays, do modify the value
of the associated variables.

Besides the simple elements – which can have different configura-
tions, as normally open, normally closed, set, reset, etc. – we can also
have complex ones, like Functional Blocks – timers and counters, for
example – and jumpers, comments, non-boolean variables and others,
which can be found in the complete documentation of the Standard
[5].

The execution of the Ladder Program is made in consecutive cycles,
called Execution Cycle or just Scan, and they can be separated in
three steps. First, the reading of input variables from the sensors
connected with the PLC. After, the calculating of intern memory and
output variables of the program, according to the rung input function
and taking into account the values of input variables stored in the
previous step. This computation is made following the rungs from
top to bottom, and from left to right. At the end, the third step is the
writing of output variables – that have been calculated before – in
PLC actuators. In the next chapter, we will see how to model this PLC
behavior.

3.2 desired properties of ld programs

When engineers or technicians write PLC programs, they have in mind
a desired behavior for the system to be controlled, which means that
they want the program to restrict its comportment. Thereby, the plant
will never exhibit an inadequate or unsafe behavior, and will do the
necessary to reach its goal – i.e., the goal it was constructed for.

Nevertheless, this does not always happen. The programs generally
contain mistakes, bad structures, or even its control logic is inappro-
priate. These problems are really hard to see, and in a LD code it is
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even worse, because the logical sequence of the program is masked by
the relay diagrams. It is necessary to use techniques to guarantee the
correctness of the program – as we will see in Chapter 4.

However, before using any verification process, we need to stipulate
which properties we want the program, or the controlled system, to
have. These properties need to reflect the aforementioned "desired
behavior", and can be classified into generic and specific ones. The
generic properties are those that do not depend on the plant to be
controlled, but can be applied to every – or to a group of – systems.
For example, many times we do not want the plant to reach an end
state, where no progress is possible to happen – this is known as
deadlock free property. For LD programs, we can enunciate as general
property that the reading state of the PLC will be reached infinitely
often – or analogously for the writing state, and for rung computation
states, for example – these are known as liveness properties.

Another generic property we want to check is the absence of race
conditions in the program [1]. Race conditions occur when operations
that should be sequential in order to reach the expected results are
simultaneous and, as the name tells, race to influence the result of
the process. In a Ladder program, it occurs when, for stable entries
– i.e., for fixed input variables and fixed functional block states – the
output variables do not stabilize, they change at each program scan
or at n consecutive scans – where n is a positive integer – forever.
We want the outputs to depend only on inputs and functional block
states, nothing else. For example, in a traffic lights program, where
the outputs change periodically (the lights), the inputs are fixed but
the timer states are not, so it is not a race condition case. The absence
of race conditions is an important property to be verified because it
can cause actuator problems, due to the high frequency of output
change, or other malfunction, since the outputs are not obeying the
input signals. Besides that, race conditions are really difficult to detect.

The specific properties are those that reflect the specification of the
plant, and therefore depend on each system. In the next topic, we will
see some examples for a case study system.

3.3 case study – aps problem

We will present as a case study in this document an Automatic Pneu-
matic System, or APS, built by LASHIP-UFSC3 (Laboratory of Hy-
draulic and Pneumatic Systems of the Federal University of Santa
Catarina) as a test bed. In fact, this is the third module of a whole
Pneumatic System, called MOD3, which is connected with the other
modules by two variables – MOD3INI and MOD3FIM. These variables
indicate, respectively, the beginning and the end of each operation
cycle of the plant.

3 http://www.laship.ufsc.br/

http://www.laship.ufsc.br/
Ana Mainhardt
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10 business domain

Figure 1: Schematic Draft for the APS

The MOD3 is composed by two perpendicular cylinders, A1 and
A2 – each of them equipped with a beginning and an end sensor –
and one suction cup, A3 – fixed in cylinder A2. This module has been
designed for transporting boxes between the limits of cylinder A1,
and its schematic draft can be seen below – Figure 1.

The initial state of the module is the configuration where the two
cylinders are retracted and the cup is off, and the operation cycle is
described by:

• With both cylinders retracted, and the cup turned off, cylinder
A2 starts to extend

• When cylinder A2 is completely extended (down position), the
suction cup is activated

• After 5 seconds – time needed for the box to be correctly fixed –
cylinder A2 starts to retract

• When cylinder A2 is completely retracted (up position), cylinder
A1 starts to extend

• When cylinder A1 is completely extended, the suction cup is
turned off (note: in this moment, cylinder A2 is retracted)
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• After 5 seconds – time needed for the box to be correctly dropped
– cylinder A2 starts to retract, returning to the initial state of the
system.

The end and beginning sensors for the cylinders are, respectively: S1

and S2 for A1 and S3 and S4 for A2. Therefore, note that:

• When A1 is retracted, S1 is on and S2 is off

• When A1 is extended, S1 is off and S2 is on

• When A1 is extending or retracting, S1 and S2 are off

The same holds for cylinder A2 and its sensors, S2 and S3. The suction
cup does not have any sensor. The Ladder Diagram Program for the
control of MOD3 can be found in Appendix A.

3.3.1 Examples of Properties – APS Specification

Besides the generic properties mentioned above, the APS problem has
other properties, specific ones, that reflect the desired behavior of the
plant. Here we are going to cite some of these properties, that will be
used throughout the document.

For the safety of the plant and the blocks that are intended to be
transported, we want the two cylinders never to move together, which
means:

• Cylinder A1 will never be extending or retracting at the same
time as cylinder A2 is extending or retracting.

Other safety property we desire in order to prevent the blocks from
falling is:

• Whenever cylinder A1 is extending or cylinder A2 is retracting,
suction cup A3 must be activated.

For preventing the useless activation of the suction cup, we also want
that:

• Whenever cylinder A1 is retracting or cylinder A2 is extending,
suction cup A3 must not be activated.

The main goal of this APS module is transporting boxes, thus we want
the boxes always to be caught and always to be dropped in the right
place. This can be enunciated as two properties:

• Infinitely often, cylinder A1 will be retracted, cylinder A2 will
be extended and cup A3 will be turned on at the same time.

• Infinitely often, cylinder A1 will be extended, A2 will be re-
tracted and cup A3 will be turned off at the same time.
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Finally, we want the module to follow the operational cycle that we
have planned, which means:

• Whenever the system is in the n-th state, we want it to remain in
this state until the next desired state, i.e., the (n+1)-th state.

Where, by "state", we mean any state taken into account in the opera-
tional cycle, namely:

• State 0: A1 retracted, A2 retracted, A3 turned off

• State 1: A1 retracted, A2 extending, A3 turned off

• State 2: A1 retracted, A2 extended, A3 turned off

• State 3: A1 retracted, A2 extended, A3 turned on

• State 4: A1 retracted, A2 retracting, A3 turned on

• State 5: A1 retracted, A2 retracted, A3 turned on

• State 6: A1 extending, A2 retracted, A3 turned on

• State 7: A1 extended, A2 retracted, A3 turned on

• State 8: A1 extended, A2 retracted, A3 turned off

• State 9: A1 retracting, A2 retracted, A3 turned off

• State 10: State 0



4
F O R M A L D O M A I N

In this chapter we will present the context over which this project is
grounded. A formal modeling language that has been used to repre-
sent the LD programs and the system to be controlled is introduced.
However, we have considered that the reader has a basic knowledge
about Discrete Events Systems and Temporal Logic – for a detailed
approach, refer respectively to [3] and [4].

The goal of this project is to facilitate to the programmers the ver-
ification of Ladder Programs. Usually, the technique applied is an
informal one, the simulation. However, as we have already mentioned,
this is not an exhaustive process, and for this reason we have used
here formal verification techniques, which guarantee the desired com-
portment of the systems. In fact, this "guarantee" is not completely
irrefutable, even with this formal approach. This can happen – and
indeed happens – due to badly stated properties or due to a formal
model that does not represent the system in a very precise manner.
In this case, the verification is not valid and the system behavior can
diverge from the expected.

In this project we have chosen Reinterpretation1 as the technique
for proceeding with the verification of Ladder Diagram programs. It
consists of:

• Translating the LD programs representation into a formal model

• Writing the properties that we want to check in an informal way

• Translating these informal properties into formal ones

• Verifying if the formal representation of the program satisfies
these formal properties by a Model-Checking technique.

The formal representation for LD programs that has been used along
this project is the FIACRE language, that allows a better data manipu-
lation, reducing the problem of states explosion and thus allowing the
verification of a wider range of Ladder programs, as those with func-
tional blocks, for instance. The formal properties have been written
in Linear Temporal Logic. The FIACRE Language will be presented
below.

4.1 fiacre language

FIACRE [6], an acronym for Intermediate Format for the Architectures
of Embedded Distributed Components, is a formal modeling language,

1 See Section 2.1

13
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for purposes of verification and simulation, developed for representing
both behavioral and timing aspects of embedded distributed systems.
It is called "intermediate" because it works as source and target in
model transformations – as will be shown later. This language was
developed in the context of the Project TOPCASED2 – Open Source
Engineering Workshop – gathering many partners, both from the
industrial and academic fields.

4.1.1 Description

A FIACRE model is structured in process and components notions.
A FIACRE process describes the behavior of sequential components,

and is declared as a set of control states and parameters, both asso-
ciated with a set of complex transitions. These complex transitions
are nothing else than statement sequences for specifying how its pa-
rameters must be changed and which transition must be fired. These
statements can be formed by deterministic constructs – as assign-
ments, if-then-else and while conditionals, sequential compositions –
non deterministic ones – for the choice of simple state transitions and
assignments – and communication events on ports – for synchroniza-
tion only or also for data exchange between different processes and
components.

The FIACRE components describe a system as a parallel composi-
tion of processes or other components – via instantiation – possibly in
a hierarchical manner, and communicating with each other through
ports and shared variables. These components allow to restrict the
access mode and the visibility of shared variables and ports, to asso-
ciate timing constraints with communications, and to define priority
between communication events.

FIACRE is considered as an intermediate language since it can be
seen as a target model in transformations from other higher level
languages and, at same time, as a compilers’ entry for verification
tools.

Among FIACRE compilers there is FRAC3, developed for the veri-
fication tool named TINA, which has been used in this work. FRAC
allows the generation, from a FIACRE model, of a Time Transition
System, or TTS – a Time Petri Nets extension which provides the
possibility to handle data and priorities, and is used for internal
representation by the TINA tool, introduced in the next section.

In the topic below, we will present an example of FIACRE model
for representing the controlled system introduced in the case study of
the previous chapter, Section 3.3.

2 http://www.topcased.org/
3 http://homepages.laas.fr/bernard/fiacre/

http://www.topcased.org/
http://homepages.laas.fr/bernard/fiacre/
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Figure 2: Communication schema in a plant controlled by a PLC

4.1.2 Fiacre Example – APS Model

We will now explain the modeling of the APS case study, which has
been introduced in the previous chapter. This model has been written
in FIACRE language and is provided here as an example of its use.
Here, we show relevant parts of the Main and PLC components and
of the Execution Cycle and Timer processes – which form the PLC.
The complete model can be found at Appendix C – where the FIACRE
elements that are indicated but "hidden" can be seen in Appendix B –
and the LD program at Appendix A.

First of all, we show the overview of the system, represented by the
Main component of the FIACRE model. The whole system is formed
by the Plant component – which means the system to be controlled –
the PLC component and the processes of input and output "glues". The
necessity of these two processes is to work as a link between the plant
and the PLC, which are asynchronous. They are those responsible for
reading and writing the input and output variables, and to send and
receive them to/from the PLC, allowing the new data value exchange.
In Figure 2, we can see the flow of these update values. The PLC reads
all the input variables together, from the glue process, as an array,
under its reading scan step4 and sends all its update output values
together under its writing step, for the output glue. The plant, on the
other hand, reads one PLC output at a time, and also sends the input
values individually.

In this LD program, we have considered as inputs the variables s3S1,
s3S2, s3S3 and s3S4; as outputs a3A1, a3A2 and a3A3. Indeed, the vari-
able MOD2INI is an input, and MOD3FIM an output, but they have
been treated here as memory variables. This happens because these
variables are the connection between this particular LD program and

4 As mentioned in Section 3.1.2
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those that refer to the other APS modules. But, as we are dealing only
with this particular program that controls the third APS module, we
can neglect this fact. Thus, the FIACRE code for the APS component
is as follows:

component APS is p
port

/* ports with timing constraints [0,0] */
par * in

PLC [portInputs, portOutputs]
|| Plant

[port_s3S, port_s3S2, port_s3S3, port_s3S4,
port_a3A1, port_a3A2, port_a3A3]

|| Input_glue
[port_s3S1, port_s3S2, port_s3S3, port_s3S4,

portInputs, portOutputs]
|| Output_glue

[port_a3A1, port_a3A2, port_a3A3,
portOutputs,portInputs]

end

The PLC component, in its turn, is the composition of the Scan
process, that represents the execution cycle of the LD program, and
the two Functional Block processes it uses – in this case, two timers-on,
called TON:

component PLC [portInputs: in type_in, portOutputs: out type_out]
is

port
/* internal communication ports -- between the scan and

the functional blocks -- with timing constraints
[0,0] */

/* functional blocks dummy ports -- in this case, TON1
and TON2 -- with time constraints referring to the
time variable in their entries */

par * in
par

/* Timers of the LD program */
TON[TON1_1, TON1_2, TON1]
|| TON[TON2_1, TON2_2, TON2]

end
|| Scan [portInputs, portOutputs,

TON1_1, TON2_1, TON1_2, TON2_2]
end

The Scan process follows the three sequential steps of reading in-
puts, calculating new values, and writing outputs. The initial state
of this process is the reading one, and the final is the state for the
reinitialization of the cycle, after the output writing. For the calculating
step, there is one state and one transition for each rung of the LD
program. Besides that, there is also one extra state and transition for
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each rung that has a Functional Block: these kinds of rungs are split
in two semi rungs, one before and other after the block. The reason
is that only one communication is allowed in each transition, and in
these rungs it is needed to send the entry value of the block to its
process and to receive from it the new output value. That is why we
use a Semi-rung class in the LD modeling – Figure 6 – as is treated
in Section 5.1.3. The Scan process for the APS Ladder program is as
follows:

process Scan [ /* ports */ ] is
states

initial, rung_1, /* ... */, writing, final
var

/* variables declaration */
init to initial

/* Reading transition */
from initial

/* reading inputs from input_glue */
portInputs? vars_in;
/* updating the input variables values */
s3S1:= vars_in[0];
s3S2:= vars_in[1];
s3S3:= vars_in[2];
s3S4:= vars_in[3];

to rung_1

/* Rung transitions without Functional Blocks... */
from rung_n

wait [0,0];
coil_variable:= input_function;

to rung_n+1
/* or << to writing >> if it is the last rung of the program */

/* Rung transitions with Functional Blocks... */
from rung_m

IN_TONi:= input_function;
TONi_1! IN_TONi;

to rung_m_1

from rung_m_1
TONi_2? Q_TONi;
Ti:= Q_TONi;

to rung_m+1
/* ... */

from writing
/* sending outputs to glue */
portOutputs! [a3A1, a3A2, a3A3];

to final
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Figure 3: Automata representation for the TON process

from final
wait [1,1];

to initial

Notice the "wait" statements in this process. This is a new statement,
included in the new version of FIACRE, which do not significantly
impacts its semantics. It is used to impose timing constraints to transi-
tions that do not have communications – because until the moment
the only way to constrain these transitions was by making a dummy
communication, i.e., a synchronization with no element. The only tran-
sition whose constraint is not "instantaneous" is the last one, between
the final and the initial state of the program scan, for representing the
cycle time duration.

This Scan process communicates with the TON process, instantiated
in the PLC component – two instances of the same declared process,
because both are of timers-on kind. Nevertheless, each block has
a dummy port with the time constraint referring to its entry time
variable – in this case, both TON blocks have an input time of 5

seconds, i.e., a time constraint of [5, 5]. The motive for using a dummy
synchronization port and not the "wait" statement is because the LD
program could have more than one block of the same type – as the
TON – but with different times – in contrast with the APS example.
Thereby – as "wait" cannot handle variables, just fixed values – instead
of having one process declaration for each kind of block, we will have
one for each block in the LD program, even when the blocks are of the
same type. Now, regarding the TON process, it has three states – idle,
running and timeout. Its behavior can be found in the LD specification
[5], the FIACRE model at Appendix B, and its automata transition
system can be seen at Figure 3.

Finally, for describing the system that the PLC controls we have
used a Plant component, which instantiates one process for each part
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of this system: two cylinders – modeled in the same manner, i.e., they
are different instances of the same process – and one suction cup.
The Cylinder process has four states – retracted, extending, extended,
retracting – and the Cup has also four – opened, closing, closed,
opening – corresponding to descriptions given in Section 3.3.5

4.2 tina verification tool

TINA6 is a toolbox for edition and analysis of Petri Nets and Time
Petri nets, developed by the OCL group of LAAS/CNRS7, Toulouse,
France. Among its available tools, we have:

• nd (Net Draw): graphical or textual editor for (Time) Petri Nets
and Automata, including a simulator.

• tina: this tool, with the same name of the toolbox, allows the con-
struction of reachability graphs and Kripke transitions systems –
useful for the verification by model-checking – from Petri Nets,
for example.

• selt: allows the user to provide LTL (Linear Time Logic) formulas
and verify if the Kripke transitions system – generate by tina –
satisfies them. When a property is not verified, the tool returns
a counterexample – which can be simulated by tina.

Thereby, this set of tools provides a powerful verification software,
which is employed in this project. From our FIACRE models and their
respective LTL properties that we want to check, the TINA toolbox
has been used for obtaining the Kripke Structures – after the models’
compilation by FRAC, which generates the Time Transition System
(TTS) – and then verifying the models’ behavior.

4.3 fiacre real time extensions – rt-fiacre

During the evolution of the FIACRE language, some extensions have
been proposed for including the real time aspects, changing its name
to RT- FIACRE, i.e., Real Time FIACRE [11]. There are two kinds of
extensions: the behavioral – which aims to increase the expressiveness
of the language – and the properties extensions, but here we will
consider only the second one.

4.3.1 Patterns

The properties extensions for FIACRE are proposed to provide a high
level verification pattern, comprehensive enough for expressing the

5 For more details about the FIACRE code of the Plant processes, see Appendix C.
6 http://homepages.laas.fr/bernard/tina/
7 http://www.laas.fr/

http://homepages.laas.fr/bernard/tina/
http://www.laas.fr/
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most common user requirements and thus hide the details from the
user – which is pretty much desirable. Before the FIACRE properties8,
the user needed to write them using the selt module of TINA – the
model-checking verification tool that we are using in this work – for
writing the LTL formules. This formules must be written accessing
directly the states in the TTS9 representation, which means that the
user must know about LTL expressions and understand the TTS
models.

These patterns have been classified in:

• General: for expressing properties like Absence of Deadlock,
propositions that are true infinitely often and propositions that
cease to be true from a moment forever on – mortal ones.

• Presence: for properties that refer to propositions which are true
at least once.

• Absence: for propositions that are always false – to check if an
undesirable behavior never happens, for example.

• Response: for expressing cause-effect properties – one fact that
leads to another in the future.

• Universality: for propositions that are always true – to check if a
necessary requirement is always met, for example.

• Precedence: for specifying when one requirement must be ful-
filled before another.

• Composition: allows to nest all other patterns through the nega-
tion, conjunction and disjunction operations – not, and, or, re-
spectively.

There is already a version of the FRAC compiler that accepts the
declaration of properties patterns and also of LTL properties. The most
desirable is to use only the patterns, but for more complex properties,
like the aforementioned Absence of Race Condition10 – which needs
nested patterns behind the existing compositions – we use the LTL
properties.

4.3.2 Example of Patterns Use – APS properties

We present in this document, as an example of use for the FIACRE
patterns, the specific properties of the APS problem. The informal
specifications of this case study have been explained in Section 3.3.1,

8 The complete pattern list can be found at http://homepages.laas.fr/bernard/
fiacre/properties.html.

9 Time Transition System
10 See Section 3.2

http://homepages.laas.fr/bernard/fiacre/properties.html
http://homepages.laas.fr/bernard/fiacre/properties.html
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and now they have been translated to the FIACRE properties dec-
larations – which are shown in Appendix E related to the FIACRE
model at Appendix C. There, we can see that the FIACRE property
declaration is written as:

property propertyName is
/* property */

Where a property can be of LTL or pattern type, both using the states
of the processes instances as atomic propositions. These states are
written in a specific way, as shown below, where mainName is the
name of the main component of the FIACRE model – in this case it is
APS – nat is a natural number – specifying the position of the desired
instance inside the previous one, i.e., as a path for this final process
instance – and, finally, stateName is the name of the desired state in
the process declaration:

mainName/ (nat/)* state stateName

As an use example of FIACRE properties, we can see below how
one of the informal properties of the APS case study is expressed:

Informal Property FIACRE expression

Infinitely often,
cylinder A1 will be retracted,
cylinder A2 will be extended and
cup A3 will be turned on
at the same time.

property example is
infinitelyoften
((APS/2/1/state retracted) and
(APS/2/2/state extended) and
(APS/2/3/state closed))

Where APS is the main component in the FIACRE model – which
you can see in Appendix C – the number 2 in APS/2/· · · is the Plant
component – because it is the second instance inside the APS com-
ponent – the number i in APS/2/i/· · · where i can be 1, 2 or 3 is,
respectively, the first, the second and the third instances inside the
Plant component, i.e., if you look to the FIACRE model, the two
cylinders and the cup.

To find the relation between the informal specifications and the
FIACRE properties, we wrote the first ones in LTL formulas, and then
found the matched patterns – see the table in Appendix F.





5
D E V E L O P M E N T A N D P R E L I M I N A RY R E S U LT S

In this chapter, we will briefly present the previous work in which
this project is inspired. The proposed architecture to fulfill the require-
ments given in the introductory chapter is also introduced, followed
by the presentation of the developed tools.

5.1 previous work

This work is an extension of that developed during the Scientific Initi-
ation Scholarship, by the same student engaged in this Coursework
Final Project. In the referred work, the goal was to construct a veri-
fication chain where Ladder Diagram programs could be translated
to formal models, and then verified by model-checking. The formal
model used was FIACRE, and the verification tool was TINA, both
already introduced in this document. Now, we will briefly present
this previous work, so as to understand the general purpose and the
context of this project.

5.1.1 MDE Methodology

The methodology used in the previous work, as well as in the current
project, is the Model-Driven Engineering, or MDE [10]. The MDE is
a software development methodology, model based – as the name
suggests – which came to improve, and not to replace, the object-
oriented paradigm.

Models are system representations built in a simplified fashion to
deal just with the relevant aspects for a certain goal – they are abstrac-
tions to deal with the desired features, unprovided of unnecessary
details – which does not mean that these models are simple ones, just
that they are designed for a particular purpose. In MDE, these models
are not only used to facilitate the system understanding, but also for
software generation. Thereby, everything is seen as a model in this
approach, which presupposes technologies for their generation and
tools for manipulating and transforming them.

In the next section, the ATL language and toolkit will be presented,
which allow model transformations so as to manipulate these models.
Further, in this chapter, we will also introduce what are Domain
Specific Languages and Xtext, a framework with which it is possible
to define them and generate an abstract model.

23
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Figure 4: Relation between models, meta-models and their meta-meta-model

5.1.2 ATL – Toolkit and Models Transformation Language

ATL1 – Atlas Transformation Language – is a model transformation
language and toolkit, built for Eclipse environment, and it is part of
a subproject of Eclipse Modeling Project2. ATL is grounded and also
supports the MDE methodology, since it is model based and supports
model operations. The ATL allows to generate a set of target models
from a set of input models, through binding rules.

These rules, which constitute an ATL program, make a link between
the elements of the input and the target models, and can be referent
to two kinds of programming paradigms: the declarative and the
imperative ones. Therefore, ATL language is a mixed of these two
kinds of paradigms – the declarative is the predominant mode, used
for simple mappings between the source and the target models, and
the imperative is used for complex mappings, allowing the call of other
rules or helpers. These helpers can be functional, like the methods in
Java language, or of attribute kind, as program variables.

Now, looking at the ATL architecture, inside of the MDE concepts,
we can actually consider the program with the binding rules as a
model. So, we have the entry models, the target models and, finally,
the transformation model. But this is not the end: all these models need
to be defined in a pattern way. As for natural languages, it is necessary
to have a syntax to adopt. In this case, the syntax is defined in what is
called meta-model. We need one meta-model for each kind of system
that we have, i.e., one for each specific domain. As an example, we
can look at the ATL: each program, i.e., each model, has specific rules,
but all of them are written in accord with the same syntax – the ATL
language syntax, which is defined in the ATL meta- model. Thereby, a
meta-model can be seen, indeed, as a model for a model, or even we
can say that the model is an instance of its meta-model.

1 http://www.eclipse.org/atl/
2 http://www.eclipse.org/modeling/

http://www.eclipse.org/atl/


http://www.eclipse.org/modeling/


5.1 previous work 25

The models and meta-models’ relationship is shown in Figure 4

above, where M means model, MM meta-model, and the indices a,
b and t indicate the entries, the targets, and the ATL transformation,
respectively. Note that there is also a MMM represented: this refers to
the meta-meta-model. Analogously to the models syntax, all the meta-
models need to be built following a syntax defined in the meta-meta-
model. It seems to be confuse, but actually it is a simple hierarchy:
there is the meta-meta-model, that is the "father" model conforming
with itself and working like a syntax for writing meta-models; then, we
have the meta-models, each one built to describe a certain domain of
systems; and, at last, there are the models describing specific systems,
each one within a certain domain and conforming with the appropriate
meta-model for this domain.

Therefore, for making an ATL transformation, we need to have:

• A meta-meta-model – the Eclipse Project provides two options,
one of them called Ecore, which has been chosen in this project.
For this reason, the meta-models are also called Ecore models,
and they are similar to UML3 Class Diagrams – so, the elements
defined in meta-models can be called classes.

• One or more entry models and their meta-models – i.e., their
instances and their respective Ecore models.

• One or more target meta-models.

• The ATL meta-model – which is already provided by the ATL
toolkit.

• The ATL program/model – which has the rules to map the entry
classes into the target classes.

The result of the transformation is one or more target models, con-
forming to their meta-models – i.e., containing instances of their
meta-model classes. These instances, in turn, were generated from the
entry classes instances by the ATL model rules.

This facet of ATL, which allows to translate between two or more
models, is called M2M, i.e., Model to Model transformation, and the
ATL program/model is an ATL module. But ATL can be used differently
because it also enables to make a program for getting any instance of
primitive data type, like Strings, from an abstract model. In this case,
the program is an ATL query and it does not contain the same rules
as in the ATL module, but an expression instantiation and helpers to
build a value type from the classes’ instances in the abstract model.
Thereby, you keep the entry models and meta-models, but instead
of obtaining a target model conforming with some meta-model, you
will have only a simple output file with the desired value type. In the
particular case where the type is String this process is called unparser,
and in the ATL case, it is a M2T, i.e., Model to Text transformation.

3 Unified Modeling Language – http://www.uml.org/.
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5.1.3 Translation Tool Architecture

The aim of the previous work introduced here was to build a tool for
obtaining a formal model from a Ladder Diagram program, allowing
the formal verification by model-checking. This technique is called
Reinterpretation, as we saw in the introductory chapter.

The formal representation chosen was the FIACRE one, and for
the Ladder Diagram programs, we have used the PLCOpen Editor,
which conforms with the International Standard IEC 61311-3 and uses
a particular XML pattern, the TC6 XML, that allows the interchange
of PLC programs and configurations.4 We have already presented the
FIACRE language and the PLCOpen Editor in the previous chapters,
as well as the reason for their choice. Now we will explain the tool
architecture.

The FIACRE language is a domain specific language, and has its
own meta-model to describe it, conforming with the Ecore meta-meta-
model – see above Section 5.1.2. An instance of this meta-model is
a FIACRE abstract model: an XML5 file that can be transformed –
for example by the ATL M2T transformation – in a textual one to
obtain the familiar FIACRE model, presented in Section 4.1. On the
other hand, the output from the PLCOpen Editor is a TC6 XML file
that contains the entire LD program edited. This XML file conforms
with its Schema, the TC6 XSD6, which can be easily transformed in
a meta-model – more precisely, in an Ecore model – by the MDE
tools. Thus, it seems very natural and obvious to choose the MDE
methodology in the Reinterpretation process: the input and the target
of the desired tool were already born within this approach, and it
provides the necessary technology to support the transformations
between the models.

We can see in Figure 5 the schema of the translation tool. These are
its components:

• The input meta-model – obtained from the TC6 Schema, and so,
called TC6 Ecore model;

• The target meta-model – representing the FIACRE structured,
thus called FIACRE Ecore model;

• An intermediate meta-model – called Ladder Ecore model, because
it also represents the LD program, but differently from the TC6

one, as we will explain below;

• The first transformation – an ATL M2M one, called TC62Ladder
since it maps the TC6 to the Ladder Ecore model;

4 See Section 3.1.1
5 Extensible Markup Language
6 XML Schema Definition
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Figure 5: Schema of the Previous Translation Tool

• The second transformation – also an ATL M2M one, but now
called Ladder2FIACRE, analogous to the preceding case;

• The tool’s input – the TC6 model that is the PLCOpen Editor
output and contains the edited LD program, i.e., the TC6 XML
file.

Besides that, we also have the ATL meta-model and the Ecore meta-
meta-model, but they are in dashed lines because they are already
included in the Modeling Eclipse environment. All the conformation
relations between the models and meta-models are shown in Figure 5.

Given all the necessary components cited above, the two ATL trans-
formations, running in sequence, make the translation between the
TC6 XML file from the PLCopen Editor and the FIACRE abstract
model. This abstract model can be unparsed7 to result in a FIACRE
textual file. Maybe you are wondering why there are two transforma-
tions instead of one, which, besides all, requires an extra meta-model.

Indeed, it would be possible to make a single transformation, di-
rectly between the input and the target models. However, the TC6

XML Schema was designed to hold all the information about the
PLC configurations and programs, not just the LD programs, nei-
ther just the logical data, but all the details, including the graphical
ones. Besides that, the LD program logic control is not evident in the
TC6 structure: it is needed to be reconstructed from the graphical
information about what is connected with what, i.e., which are the
LD elements connected to one another. That is why the intermedi-
ate Ladder meta-model was introduced – Figure 6 – facilitating the
ATL rules since its structure is well-organized specifically for the LD
program representation. Besides that, this intermediate meta-model
allows other LD editors to use the same Translation Tool – it is only

7 As explained before, in Section 5.1.2
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Figure 6: UML Class Diagram to represent a Ladder Program

necessary to make another transformation, using ATL or other MDE
appropriate language, for getting the Ladder model from the output
of your desired LD software editor. Therefore, the Ladder meta-model
is a kind of convergence point: once you have obtained its instance
that represents your LD program, you can use the Tool for getting the
FIACRE model.

The FIACRE model generated at the end of this translation chain
contains the PLC component, with the Scan Process and the Functional
Blocks Processes. These elements have been explained in Section 4.1.2.
There it has also the reason for the Semi-rung Class in the Ladder
meta-model, introduced to deal with LD programs that use Functional
Blocks.

5.2 project archicteture

In this section we will present the desired architecture for this project,
and in the next ones, the developed work. As seen above, in the previ-
ous work a chain between the Ladder Diagram programs, written in
PLCOpen Editor, and the FIACRE abstract models was constructed.
Nonetheless, there are two problems left, because the PLC program-
mers still need to have knowledge about the formal verification tech-
niques for:
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• writing the formal properties to be verified, i.e., translating the
informal specification into a formal one;

• writing the formal model to represent the plant – the system
to be controlled – since the FIACRE model obtained by the
previous chain refers only to the PLC – the Scan process and the
Functional Blocks process.

For the first problem, we propose here the Business Property Language,
or BPL, that enables the PLC programmer to write properties he
wants to check about his system and to automatically translate it
to Temporal Logic. For the second issue, there is a partial solution
via an improvement in the previous translation tool, which will now
generate two FIACRE models, one where the PLC component is
composed with a generic Plant without restrictions – analogously
to buttonholes for the inputs and LEDs for the outputs, to check
the good writing of the LD program (the Fiacre Complete Model for
Generic Properties at the figure) – and a second model where the PLC
is composed with an unfinished Plant Component (Fiacre Incomplete
Model for Specific Properties Verification at the figure), which needs the
manual formal modeling for the processes that compose it – that is
why we said "partial solution". Both approaches are shown in Figure 7,
and explained in the next sections.

Figure 7: Simplified Schema of the Translation Chains

5.3 translation tool improvement

In this section we will present what was done in the previous Transla-
tion Tool8, for trying to solve the Plant modeling problem. This tool,
as we can see at Figure 5, is formed by two M2M ATL transformations,
which allow to pass from an edited LD program – a TC6 model – to
the Ladder model, and then to the FIACRE abstract model (conforming
to the FIACRE Ecore meta-model).

There were two problems. One referent to the FIACRE abstract
model, which only contains the PLC component (the Scan process

8 Introduced above in Section 5.1.3
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composed with the Functional Blocks processes), lacking the Plant
modeling and the glues processes to bind it with the PLC. The second
issue is the missing of an unparser to obtain FIACRE textual models
from the abstract ones, generated by the translator. They are discussed
below.

5.3.1 FIACRE target model complement

To address the lacking of a Plant component mentioned above, this
project uses only a partial solution. We say "partial" because it does not
solve the problem of modeling the Plant system without having formal
knowledge. This means that there is not a language appropriated for
the technicians that have not a foundation to use the FIACRE model,
for example, and that serves to model the plant.

The new architecture of the translation tool is shown in Figure 8,
where we can see which part has been changed. Our goal was to reach
two target models. The first one, called A in the picture, would be
the general verification of the LD program, i.e., to analyze if the LD
program is well-written, if it has any race condition in any variable,
if there is deadlock, and so on. The second model, B, was to verify
the complete controlled system, which means the PLC with the Plant
model.

Figure 8: Schema of the Improved Translation Tool

With this purpose, we use the second ATL transformation in the
previous chain as a basis to be incremented. This program already al-
lowed to go from the Ladder model to the FIACRE model with the PLC
component. What was done was the addition of rules for obtaining
the model of the rest of the system, as we explained above. Thereby,
the second ATL program was split in two – Ladder2FIACREgeneric,
resulting in the model A, and Ladder2FIACREspecific, resulting in B.
The TC62Ladder transformation was not changed, because it works for
the data organization, and not really for its processing.9

To the first model, A, we added a generic Plant Component. It is
generic because it represents the input and output variables of the
LD program, changing independently. Thereby, there are no real plant

9 See Section 5.1.3.
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restrictions on the variables’ behavior. The only limitations on the
entire system’s comportment are imposed by the PLC control. In
the real system we can say that it never happens, because generally
the system without control already has some kind of restrictions in
its variables – since they are somehow connected. That is why this
model is used specifically for the LD program verification, despite of
the plant that it controls. In it, the PLC is composed with the Plant
through the aforementioned "glue" process.10 The plant, in turn, is a
composition of instances of input and output variable processes – one
for each of these variables present in the LD program. The input and
the output processes declarations have two states: one for the true and
other for the false value. In Section 6.1 and in Appendix B we will see
this model for the APS problem.

The second model, B, has also the PLC and the Plant connected
by the glue processes. However, the Plant is not complete. It is just a
structure of a component, with the appropriate ports – related, once
more, to the input and output variables of the LD program – but
without any process instance. This is where someone with formal
verification skills must use the FIACRE language for modeling the
plant processes and its bindings. One example of this model is also
given in the Final Results chapter and in Appendix C – where the part
that was automatically engendered and the one that was manually
written are indicated.

5.3.2 FIACRE model to FIACRE text

In the topic above we treat the improvement of the previous Transla-
tion Tool as regards to the FIACRE model complement that is obtained
as target. Nevertheless, this "FIACRE model" is actually an abstract
model, or in other words, an instance of the FIACRE Ecore model – i.e.,
an XML file. The formal model that we want to obtain, however, is the
FIACRE textual model, which holds as entry for the model-checking
tool – in this project, the aforementioned TINA toolkit.

Thereby, it is necessary to construct the textual model file from
the the abstract model information. As we have seen before the ATL
language and toolkit provides a kind of transformation, called M2T,
which works as an unparser – see Section 5.1.2. Therefore, to address
this problem an ATL M2T transformation has been implemented,
which binds the Classes and Relations in the abstract FIACRE model
to the textual constructions of the FIACRE syntax, respecting the
language semantic. This ATL program is called fiacre2fcr due to the
files extensions – fiacre for the abstract model, and fcr for the textual
one. In this way, the first planned chain of the project is complete and
allows to obtain models of the format presented in Section 4.1.2. Two

10 See Section 4.1.2
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examples of this target file can be seen in Appendix B and Appendix C,
for the APS Case Study.

In these appendices we can also see that, in the case of a FIACRE
abstract model containing a generic Plant – i.e., with the input and
output process declarations and their instances in the Plant component
– some FIACRE properties are generated. These properties are generic
ones, and refer to the LD program writing. Therefore, in the case of the
generic FIACRE abstract model – target of the Ladder2FIACREgeneric
transformation – the fiacre2fcr transformation returns a FIACRE textual
model ready to be verified in the model-checking tool TINA, since it
has a complete model and the properties to be checked. The target of
the Ladder2FiacreSpecific transformation, on the other hand, needs to
be edited to add the process of the plant – see previous topic – and
the specific properties – which will be treated in the next topic.

5.4 proposed language – bpl

The BPL – Business Property Language – is part of this project’s
developed work, and its aim is to make it easy for the technicians
to translate the informal specification into the formal one. It is a
textual natural language, dedicated to the properties writing, which
can be automatically transformed in FIACRE formal ones – seen at
Section 4.3.

In fact, the best solution would be to use a preexisting business
language, that the technicians were familiar with. For example, in
hydraulic systems, it is usual to write a route-step diagram – like
the one shown in Figure 9, used in [8] for APS – from which we can
extract some desired properties. But this procedure is not formalized
in a norm or pattern, nor has it a software editor, and it is used just
for specific kinds of systems. Therefore, in the absence of a general
standard for the system informal properties, the proposed solution was
this textual language, introduced below. After its syntax presentation,
we will see how it has been implemented and how the transformation
to FIACRE properties has been done. We will also see an example of
use, for the APS case study.

Figure 9: An example of Route-step Diagram

Ana Mainhardt

Ana Mainhardt
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5.4.1 Syntax

The Syntax of BPL is given in Appendix G. We have used a variant of
the Extended Backus-Naur Form for describing it – the same as the
one used in the FIACRE syntax description at [6].

As mentioned before, BPL is a kind of textual natural language for
expressing system properties. The basic body of a BPL text is shown
below:

/* BPL text */
modelName model properties

/* properties statements */
using
/* declarations */
/* propositions */
atomic propositions {

/* atomic propositions declaration */
}

There we can see properties statements, declarations, propositions
and atomic propositions. The atomic propositions refer to the states
that we want to observe in the plant model, like the one where a cylin-
der is retracted, for example. As we explained before, we have just a
partial solution for the plant modeling problem, so, after the transla-
tion chain, the processes that compose the plant must be modeled, "by
hand", inside the FIACRE model obtained automatically. Each one of
these processes will have a name – processName – and it will be instan-
tiated inside the Plant component. So, the atomic propositions must
be written as below, where int refers to the position of the process’
instance inside the Plant component, and stateName is the name used
in the FIACRE process declaration for its state that we want to observe:

processName_int_stateName

The propositions are facultative, used when we want to make a
construction built by one or more atomic propositions through the
conjunction, disjunction and negation operations (and, or and not, re-
spectively). Their syntax is:

proposition propName:
/* atomic propositions constructions */

The declarations are also facultative, this time used for making it
easy to write properties. They are, in fact, simple properties – which
we explained above – but that will be verified only inside the proper-
ties statements. They are declared as:

declaration declName:
/* simple properties */
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Finally, we have the properties statements, written as:

property propertyName:
/* general, simple or complex properties */

The general property is used for testing if the entire system is free of
deadlock. The simple properties are written by using the propositions
and atomic propositions declarations given at the end of the BPL text –
which must not be declared again, just mentioned by their names. The
complex properties, in turn, are built by declaring simple properties
or just by mentioning the name of the ones that were already stated in
the declarations, explained before. The complete BPL syntax with the
properties declarations possibilities are given in Appendix G.

5.4.2 Domain-Specific Language and Xtext

The BPL language presented above is an example of a Domain-Specific
Language, or DSL. A DSL, as the name says, is constructed to provide
a way to express basically anything, in a particular domain or point of
view. In this case, BPL is used to write the desired systems’ behaviors,
i.e., the systems’ properties. There are some tools for implementing
DSLs, and in this project we have chosen the Xtext.

Xtext11 is a language development framework, inserted in the MDE
context, used to define a textual syntax, like a DSL or a general
purpose programming language. It also allows the generation of a
meta-model12 or it can be based on a preexisting one; actually, Xtext
can hold with these two approaches mixed to improve an already
defined meta-model and build a syntax language.

The Xtext grammar is a domain-specific language itself, designed for
the description of textual languages. Once a concrete syntax is defined,
it is mapped into a semantic model representation, which is the meta-
model that we were talking about. Each textual file that is written
using the defined syntax can be transformed in a model, conforming
to the meta-model, through the parser procedure – the inverse of the
unparser, introduced in Section 5.1.2. The parser algorithm that Xtext
implements is the Left Recursion one, or LL(*), which analyzes the
content of the textual file from left to right. To write, for example, the
propositions, mentioned in the previous topic – which have operations
between one or more atomic propositions, like conjunction, disjunction
and negation – this characteristic needs to be carefully considered for
obtaining an appropriate and free-of-errors model.

After the conceptual definition of the BPL syntax, it was imple-
mented using Xtext so as to obtain:

11 http://www.eclipse.org/Xtext/
12 Meta-model concept introduced in Section 5.1.1 and Section 5.1.2.

http://www.eclipse.org/Xtext/
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• its meta-model – named BPL – the necessary plug-ins to create
its instance models – with the extension "bpl" – and an editor to
modify them;

• a simple editor for the textual BPL files – which have the exten-
sion "bpltext".

The textual BPL files are the ones which have the model properties
that we want to check, written under the syntax defined with the
Xtext. The BPL instance models are XML files that contain the same
properties, but arranged conforming to their semantic expressed in
their meta-model structure. Next, we will give an example of BPL
textual files, for the APS case study, and after we show what is done
for transforming the BPL properties in FIACRE ones.

5.4.3 BPL Example – APS Properties

In Section 3.3 we saw the APS case study and also its desired prop-
erties, written in an informal fashion. Now, with the BPL definition,
we can write them according to its syntax. Therefore, we have built
a table with each APS informal specification mentioned before and
their respective BPL properties. In this same table, we can also see
their formal meaning as LTL expressions and the FIACRE properties
that are obtained after the translation – which is explained below in
the next topic. The table can be found at Appendix F. We can also see
the complete BPL text for the APS properties in Appendix D.

5.4.4 BPL Properties to RT-FIACRE properties

After we have implemented the BPL syntax with Xtext, it became
possible to write the properties in a text file, using the simple editor
engendered in the process. The appropriate links between the syntax
elements – in the textual file – and the semantic ones – defined in the
meta-model built by Xtext through the grammar definition – were also
generated. With these links, it was easy to construct a parser to obtain
BPL models from the BPL textual file – see Section 5.4.2 above.

With the BPL meta-model, named BPL Ecore model – because its meta-
meta-model is an Ecore one – and its models – whose extension is "bpl"
– it was possible to make an ATL transformation, named BPL2FIACRE,
of the kind M2T13, to directly obtain the FIACRE properties textual
model. Otherwise, we could have done an M2M14 ATL transformation,
to obtain a FIACRE properties abstract model (a XML file); however,
the RT-FIACRE meta-model is still in the process of development
and so it is always changing. For this reason, we have chosen to

13 Model to Text transformation
14 Model to Model transformation
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use a model-to-text translation to avoid the use of the RT-FIACRE
meta-model.

For constructing the transformation, we needed to establish the
semantic meaning of the BLP properties. Therefore, we have written
the LTL expression for each possible BPL property structure, and then
we have put them in FIACRE declarations. For the general and simple
properties – mentioned in Section 5.4.1 – and for some of the complex
ones, there is a table in Appendix H showing the relation between
BPL, LTL and FIACRE. For the other complex properties that can be
built with the simple ones, there is no FIACRE pattern, and we use
the LTL formula instead15. There are two kinds of complex statements,
the if-then and the whenever-then, each one of them using two simple
properties and having the basic LTL expression below:

• if simple_prop1 then simple_prop2:

(simple_prop1 => simple_prop2)

• whenever simple_prop1 then simple_prop2:

[] (simple_prop1 => simple_prop2)

Where simple_prop1 and 2 are the LTL expressions given in the second
column of the table mentioned above for each one of the simple
properties defined by BPL.

In Section 6.1 we will see an example of this transformation target,
for the APS case study. This result can be found at Appendix E. Here,
just as an example, you can see how one informal specification of the
APS case study is written:

Informal Property BPL expression

Infinitely often,
cylinder A1 will be retracted,
cylinder A2 will be extended and
cup A3 will be turned on
at the same time.

property example:
(Cylinder.1.retracted and
Cylinder.2.extended and
Cup.3.closed)
will be true an infinite number of
times

Where the numbers 1, 2 and 3 refer to the process instance position
inside the Plant composition – if you see the FIACRE Plant declaration,
at Appendix C, the Plant is:
component Plant [· · · ] is

par * in

Cylinder [a3A1Port, s3S1Port, s3S2Port](true)

|| Cylinder [a3A2Port, s3S3Port, s3S4Port](true)

|| Cup [a3A3Port](false)

end par

15 Remembering that FIACRE properties can be written as patterns or as LTL expressions
– see Section 4.3.



6
F I N A L R E S U LT S

In this chapter, we will present a brief overview of the entire work,
showing what was done and how we must proceed to verify an LD
program. We will also see the complete verification chain for the APS
example.

At Figure 10, there is a schematic picture for the constructed tool.
There are two chains, one for the system modeling, and the other for its
properties writing. We will start by the first one, which corresponds to
the Improved Translation Tool box at Figure 7. Initially, we must have an
edited LD program as a TC6 XML file. It can be achieved through the
PLCOpen Editor of Beremiz Project, which has a graphical LD editor1.
Using this file as an entry, in the Eclipse environment, we run the first
ATL transformation, TC62Ladder, to obtain the corresponding Ladder
model. This transformation must have, as an entry meta-model, the
TC6 Ecore, and as a target meta-model, the Ladder Ecore. After that, we
use the generated Ladder model in the two next ATL transformations –
Ladder2FIACREgeneric and Ladder2FIACREspecific, or, respectively, A
and B in the picture – this time having the Ladder Ecore as the entry
meta-model and the FIACRE Ecore as the target one. Thereby we
obtain, respectively, a FIACRE abstract model containing the PLC
component bound by the "glue" process to a Plant, which is formed
by input and output variables processes, and other FIACRE model
with the same PLC but with an incomplete Plant model.2

Figure 10: Developed Tool Architecture

After this, each one of these FIACRE abstract models must be
unparsed, by the ATL M2T transformation fiacre2fcr – named like
this because the abstract models have the extension "fiacre" and the
textual ones have the extension "fcr". In the first textual model some

1 See Section 3.1.1.
2 For futher details about the first chain, see Section 5.1.3 and Section 5.3.1.
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general properties to be verified on the LD program will be already
engendered. This does not happen with the second one, which must
be completed with processes’ declarations – referring to the plant
system – and their instantiations inside the Plant component.3

Now we will see the second chain, still in Figure 10 – which corre-
sponds to the BPL Editor and Transformation Tool at Figure 7. In parallel
with the steps explained above, we can build the system’s desired
properties to be verified. First of all, we write the system specification
using the BPL syntax, also in the Eclipse environment. Thus, we use
the ATL M2T transformation BPL2FIACRE4 to obtain these specifica-
tions as FIACRE properties, which must be joined to the end of the
FIACRE textual model – the one that has the plant processes edited
manually.

Therefore, we will have two FIACRE textual models with a modeled
system and its properties. At this moment, we use the TINA toolbox5 –
specifically the modules tina and selt – to perform the model-checking.
In the next topic, we will talk about the APS example and its results.

6.1 aps case study results

Along this entire document, we have been dealing with the APS case
study. It was introduced in Chapter 3, and its modeling procedure and
properties writing have been treated in Chapter 4. For organizing the
ideas, Figure 10 above have some numbers to indicate what is shown
in this report’s attachments. In the next table, we indicate exactly
which appendix refers to each item.

Element Number Appendix

1 Appendix A
2 Appendix B
3 Appendix C
4 Appendix D
5 Appendix E

Table 1: Connections between the elements in Figure 10 and the Appendices

The results of the model-checking of the APS properties on the given
models are shown in Appendix F. There, we can find a table, already
mentioned in this document, in which are the APS specifications,
their respective BPL, LTL and FIACRE expressions and, in the last
column, the results and the verification time (starting at the FIACRE
models) using TINA toolbox. Actually, for these properties, all results
are positive, because the system controlled by its LD program has the

3 See Section 5.3.2.
4 See Section 5.4.4.
5 Introduced in Section 4.2.
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desired behavior. We have also tested some properties that should
not to be true, just as a test, but we have not put them here to avoid
misleading results.





7
C O N C L U S I O N A N D F U T U R E W O R K

In this document we have seen the project motivation as well as the
development phases. The implemented tool is based in the MDE
methodology and allows to perform the Reinterpretation approach for
the formal verification of the Ladder Diagram programs. The formal
model used is the FIACRE language, which allows to represent the
system behavior and also its properties – as patterns or LTL formulas.
A Translation Tool’s preliminary version – implemented by the same
student involved in this work – has been now improved, resulting
in a first chain that, from an LD program, leads to a FIACRE model.
Besides that, a business language, called BPL, has been constructed,
which enables to write in an informal manner the plant specifications.
Finally, a second translation chain was constructed, which allows to
generate formal FIACRE properties from the BPL ones. With these
two automatic translation chains, it is possible to proceed with the
model-checking in a preexisting tool, as TINA, using as entries the
FIACRE models and the FIACRE properties obtained as target before.

The developed tool can already be used for LD programs’ verifica-
tion. However, there are several perspectives of future work. First, the
BPL language proposed for dealing with the informal specification
can be improved or changed. As an example of improvement, the
way of writing the atomic propositions can be changed, removing
the integer numbers that express the instance positions inside the
Plant component and, instead of that, using a name more intuitive for
the user, which addresses directly to the process instance. The BPL
language was elaborated as a first step to allow the writing of the
system properties by the technicians. Nevertheless, a better solution
would be to find a preexisting and standardized language with which
the programmers are already familiar.

Other proposal for future work is about the plant modeling problem,
explained at Section 5.3.1. It still needs to be done manually, because its
characteristics cannot be inferred from the LD program. Remembering,
the translation tool has two target FIACRE models. The first has a
system modeling included, but it does not refer to the real plant,
because there are no restrictions in the variables change – it is just for
the verification of the LD program writing. The second model, in turn,
does not have the plant representation included. To address this issue
a Domain Specific Language, as BPL, must be formulated, and also a
chain to go from the model written in this language to the FIACRE
model. The elaboration of this kind of DSL is not at all trivial, because
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it must be capable of representing any behavior that the system can
have, and besides that, it must not require formal models skills.

Finally, a last proposal cited here will be about the model-checking
result. The model-checking verification results true or false for each
property, and in the case of a false one, it gives a counterexample. The
problem is that this counterexample is given in a formal representation.
Thereby, the proposal is to build a translation chain in the inverse
path: from the formal models to informal ones, which the technicians
are able to understand, and, by doing so, to fix the LD program where
it falls.
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A P S F I A C R E M O D E L W I T H G E N E R I C P L A N T

// Fiacre Textual Model
// It refers to the APS controlled system

type indexOut is 0 .. 2
type arrayIn is array 4 of bool
type arrayOut is array 3 of bool

process Input [sendVar: out bool] is
states varTrue, varFalse
init to varFalse
from varFalse

select
sendVar! false; loop
[]sendVar! true; to varTrue

end select
from varTrue

select
sendVar! true; loop
[]sendVar! false; to varFalse

end select

process InputGlue [writeInputs: out arrayIn, syncPort: in
arrayOut, s3S4Port: in bool, s3S3Port: in bool, s3S2Port: in
bool, s3S1Port: in bool] is

states writing, synchronizing, getInput_s3S4, getInput_s3
S3, getInput_s3S2, getInput_s3S1

var irrelevantArray: arrayOut, s3S4: bool, s3S3: bool, s3
S2: bool, s3S1: bool

init to getInput_s3S4
from writing

writeInputs! [s3S4, s3S3, s3S2, s3S1]; to
synchronizing

from synchronizing
syncPort? irrelevantArray; to getInput_s3S4

from getInput_s3S4
s3S4Port? s3S4; to getInput_s3S3

from getInput_s3S3
s3S3Port? s3S3; to getInput_s3S2

from getInput_s3S2
s3S2Port? s3S2; to getInput_s3S1

from getInput_s3S1
s3S1Port? s3S1; to writing

process Output [receiveVar: in arrayOut] (arrayIndexVar: indexOut
) is

states varTrue, varFalse

47



48 bibliography

var outputsVarsArray: arrayOut
init to varFalse
from varFalse

receiveVar? outputsVarsArray; if outputsVarsArray
[arrayIndexVar] then to varTrue else loop end

from varTrue
receiveVar? outputsVarsArray; if outputsVarsArray

[arrayIndexVar] then loop else to varFalse
end

process Scan
[portInputs: in arrayIn, portOutputs: out arrayOut,

portTON1_IN: out bool, portTON1_Q: in bool, portTON2_

IN: out bool, portTON2_Q: in bool]
is
states initial, writing, final, rung_1, rung_2, rung_3,

rung_4, rung_5, rung_6, rung_7, rung_8, rung_9, rung
_10, rung_11, rung_12, rung_13, rung_15, rung_17,
rung_18, rung_19, rung_14, rung_141, rung_16, rung
_161

var
varsIn: arrayIn, s3S4: bool := false, s3S3: bool

:= false, s3S2: bool := false, s3S1: bool :=
false, MANUAL1: bool := false, MANUAL2: bool
:= false, MANUAL3: bool := false, B22: bool
:= false, B21: bool := false, P1: bool :=
false, P2: bool := false, P3: bool := false,
P4: bool := false, P5: bool := false, P6:
bool := false, P7: bool := false, P0: bool :=
false, s0S1: bool := false, MOD3INI: bool :=
false, MOD3FIM: bool := false, a3A3: bool :=
false, a3A2: bool := false, a3A1: bool :=
false, T1: bool := false, T2: bool := false,
TON1_IN: bool := false, TON2_IN: bool :=
false, TON1_Q: bool := false, TON2_Q: bool :=
false

init to initial
from initial

portInputs? varsIn; s3S4 := varsIn[0]; s3S3 :=
varsIn[1]; s3S2 := varsIn[2]; s3S1 := varsIn
[3]; to rung_1

from writing
portOutputs! [a3A3, a3A2, a3A1]; to final

from final
wait[1, 1]; to initial

from rung_1
wait[0, 0]; B21 := ((not B22) and MANUAL2); to

rung_2
from rung_2

wait[0, 0]; B22 := (MANUAL2 or B21); to rung_3
from rung_3
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wait[0, 0]; P0 := ((P0 and (not P1)) or (((P7 and
(B21 and (not P6))) and (not P1)) or ((s0S1
and (not P1)) or ((P7 and ((not P6) and (
MANUAL1 and MANUAL3))) and (not P1))))); to
rung_4

from rung_4
wait[0, 0]; P1 := ((((not P7) and (P0 and (MANUAL

1 and (MOD3INI and ((not P2) and MANUAL3)))))
and (not s0S1)) or (((P1 and (not P2)) and (
not s0S1)) or ((B21 and ((not P7) and (P0 and
(not P2)))) and (not s0S1)))); to rung_5

from rung_5
wait[0, 0]; P2 := (((P2 and (not P3)) and (not s0

S1)) or (((P1 and ((not P3) and (B21 and (not
s0S1)))) and (not P0)) or ((s3S4 and (P1 and
((not P3) and (MANUAL1 and ((not s0S1) and
MANUAL3))))) and (not P0)))); to rung_6

from rung_6
wait[0, 0]; P3 := (((B21 and (P2 and ((not P1)

and (not P4)))) and (not s0S1)) or (((P3 and
(not P4)) and (not s0S1)) or ((T1 and (P2 and
(MANUAL1 and ((not P1) and ((not P4) and (
not s0S1)))))) and MANUAL3))); to rung_7

from rung_7
wait[0, 0]; P4 := ((((not s0S1) and (P3 and (s3S3

and ((not P5) and (MANUAL1 and (not P2))))))
and MANUAL3) or ((((not s0S1) and (not P5))
and P4) or (((not s0S1) and (B21 and (P3 and
(not P5)))) and (not P2)))); to rung_8

from rung_8
wait[0, 0]; P5 := ((((not P6) and P5) and (not s0

S1)) or (((B21 and ((not P6) and ((not P3)
and P4))) and (not s0S1)) or (((not P6) and
((not P3) and (MANUAL3 and (P4 and (s3S2 and
MANUAL1))))) and (not s0S1)))); to rung_9

from rung_9
wait[0, 0]; P6 := ((((not P7) and (not s0S1)) and

P6) or ((((not P4) and ((not P7) and ((not s
0S1) and (P5 and (MANUAL1 and MANUAL3)))))
and T2) or (((not P4) and (B21 and ((not P7)
and (not s0S1)))) and P5))); to rung_10

from rung_10
wait[0, 0]; P7 := ((((not s0S1) and ((not P5) and

(P6 and (MANUAL1 and (MANUAL3 and s3S1)))))
and (not P0)) or ((((not s0S1) and ((not P5)
and (P6 and B21))) and (not P0)) or (((not s0
S1) and P7) and (not P0)))); to rung_11

from rung_11
wait[0, 0]; a3A2 := (a3A2 or P1); to rung_12

from rung_12
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wait[0, 0]; a3A2 := (a3A2 and (not P3)); to rung
_13

from rung_13
wait[0, 0]; a3A3 := (a3A3 or P2); to rung_14

from rung_15
wait[0, 0]; a3A3 := (a3A3 and (not P5)); to rung

_16
from rung_17

wait[0, 0]; a3A1 := (a3A1 or P4); to rung_18
from rung_18

wait[0, 0]; a3A1 := (a3A1 and (not P6)); to rung
_19

from rung_19
wait[0, 0]; MOD3FIM := P7; to writing

from rung_14
TON1_IN := P2; portTON1_IN! TON1_IN; to rung_141

from rung_141
portTON1_Q? TON1_Q; T1 := TON1_Q; to rung_15

from rung_16
TON2_IN := P5; portTON2_IN! TON2_IN; to rung_161

from rung_161
portTON2_Q? TON2_Q; T2 := TON2_Q; to rung_17

process TON [portIN: in bool, portQ: out bool, portTimer: none]
is

states idle, running, elapsed
var IN: bool := false, Q: bool := false
init to idle
from idle

select
portIN? IN; if IN then to running else

loop end
[]portQ! Q; loop

end select
from running

select
portIN? IN; if (not IN) then to idle else

loop end
[]portTimer; Q := true; to elapsed
[]portQ! Q; loop

end select
from elapsed

select
portIN? IN; if (not IN) then Q := false;

to idle else loop end
[]portQ! Q; loop

end select

component PLC [portInputs: in arrayIn, portOutputs: out arrayOut]
is

port portTON1_IN: bool in [0,0], portTON1_Q: bool in
[0,0], portTON1_Timer: none in [5,5], portTON2_IN:
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bool in [0,0], portTON2_Q: bool in [0,0], portTON2_

Timer: none in [5,5]
par * in

Scan [portInputs, portOutputs, portTON1_IN,
portTON1_Q, portTON2_IN, portTON2_Q]

|| TON [portTON1_IN, portTON1_Q, portTON1_Timer]
|| TON [portTON2_IN, portTON2_Q, portTON2_Timer]

end par

component Inputs [writeInputs: out arrayIn, readOutputs: in
arrayOut] is

port s3S4Port: bool in [0,0], s3S3Port: bool in [0,0], s3
S2Port: bool in [0,0], s3S1Port: bool in [0,0]

par * in
InputGlue [writeInputs, readOutputs, s3S4Port, s3

S3Port, s3S2Port, s3S1Port]
|| Input [s3S4Port]
|| Input [s3S3Port]
|| Input [s3S2Port]
|| Input [s3S1Port]

end par

component Outputs [readOutputs: in arrayOut] is
par * in

Output [readOutputs] (0)
|| Output [readOutputs] (1)
|| Output [readOutputs] (2)

end par

component Plant [writeInputs: out arrayIn, readOutputs: in
arrayOut] is

par * in
Inputs [writeInputs, readOutputs]
|| Outputs [readOutputs]

end par

component APS is
port portInputs: arrayIn in [0,0], portOutputs: arrayOut

in [0,0]
par * in

PLC [portInputs, portOutputs]
|| Plant [portInputs, portOutputs]

end par

APS

/* ------------------------------------------- */
/* Generic Properties about the Ladder Program */
/* ------------------------------------------- */

property notdead is deadlockfree
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property plcReads is infinitelyoften APS/1/1/state initial
property plcWrites is infinitelyoften APS/1/1/state writing
property plcRestarts is infinitelyoften APS/1/1/state final
property absenceRaceCondition_a3A3 is

ltl [] ((
(([] APS/2/1/2/state varTrue) or ([] APS/2/1/2/

state varFalse))
and (([] APS/2/1/3/state varTrue) or ([]

APS/2/1/3/state varFalse))
and (([] APS/2/1/4/state varTrue) or ([]

APS/2/1/4/state varFalse))
and (([] APS/2/1/5/state varTrue) or ([]

APS/2/1/5/state varFalse))
and (([] APS/1/2/state idle) or ([] APS

/1/2/state running) or ([] APS/1/2/
state elapsed))

and (([] APS/1/3/state idle) or ([] APS
/1/3/state running) or ([] APS/1/3/
state elapsed)))

=> <> (([] APS/2/2/1/state varTrue) or ([] APS
/2/2/1/state varFalse)))

property absenceRaceCondition_a3A2 is
ltl [] ((

(([] APS/2/1/2/state varTrue) or ([] APS/2/1/2/
state varFalse))

and (([] APS/2/1/3/state varTrue) or ([]
APS/2/1/3/state varFalse))

and (([] APS/2/1/4/state varTrue) or ([]
APS/2/1/4/state varFalse))

and (([] APS/2/1/5/state varTrue) or ([]
APS/2/1/5/state varFalse))

and (([] APS/1/2/state idle) or ([] APS
/1/2/state running) or ([] APS/1/2/
state elapsed))

and (([] APS/1/3/state idle) or ([] APS
/1/3/state running) or ([] APS/1/3/
state elapsed)))

=> <> (([] APS/2/2/2/state varTrue) or ([] APS
/2/2/2/state varFalse)))

property absenceRaceCondition_a3A1 is
ltl [] ((

(([] APS/2/1/2/state varTrue) or ([] APS/2/1/2/
state varFalse))

and (([] APS/2/1/3/state varTrue) or ([]
APS/2/1/3/state varFalse))

and (([] APS/2/1/4/state varTrue) or ([]
APS/2/1/4/state varFalse))

and (([] APS/2/1/5/state varTrue) or ([]
APS/2/1/5/state varFalse))

and (([] APS/1/2/state idle) or ([] APS
/1/2/state running) or ([] APS/1/2/
state elapsed))
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and (([] APS/1/3/state idle) or ([] APS
/1/3/state running) or ([] APS/1/3/
state elapsed)))

=> <> (([] APS/2/2/3/state varTrue) or ([] APS
/2/2/3/state varFalse)))

assert notdead
assert plcReads
assert plcWrites
assert plcRestarts
assert absenceRaceCondition_a3A3
assert absenceRaceCondition_a3A2
assert absenceRaceCondition_a3A1
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// Fiacre Textual Model
// It refers to the APS controlled system

type arrayIn /* ... See Appendix B ... */
type arrayOut /* ... */
process InputGlue /* ... */

process OutputGlue [readOutputs: in arrayOut, syncPort: in
arrayIn, a3A3Port: out bool, a3A2Port: out bool, a3A1Port:
out bool] is

states reading, synchronizing, sendOutput_a3A3,
sendOutput_a3A2, sendOutput_a3A1

var varsOut: arrayOut, irrelevantArray: arrayIn, a3A3:
bool, a3A2: bool, a3A1: bool

init to synchronizing
from reading

readOutputs? varsOut; a3A3 := varsOut[0]; a3A2 :=
varsOut[1]; a3A1 := varsOut[2]; to
sendOutput_a3A3

from synchronizing
syncPort? irrelevantArray; to reading

from sendOutput_a3A3
a3A3Port! a3A3; to sendOutput_a3A2

from sendOutput_a3A2
a3A2Port! a3A2; to sendOutput_a3A1

from sendOutput_a3A1
a3A1Port! a3A1; to synchronizing

process Scan /* ... */
process TON /* ... */
component PLC /* ... */

/* --------------------------------------- */
/* The Cylinder and the Cup processes were modeled manually and

refers to the Plant Processes */

process Cylinder [pA: in bool, pRetractedS, pExtendedS: out bool]
(bolRetracted : bool) is

states retracted, extending, extended, retracting
var A: bool:= false
init if bolRetracted then to retracted else to extended

end
from retracted

select
pA? A; if A then to extending else loop

end
[] pRetractedS! true; loop
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[] pExtendedS! false; loop
end

from extending
select

pA? A; if A then loop else to retracting
end

[] wait[2,2]; to extended
[] pRetractedS! false; loop
[] pExtendedS! false; loop

end
from extended

select
pA? A; if A then loop else to retracting

end
[] pRetractedS! false; loop
[] pExtendedS! true;loop

end
from retracting

select
pA? A; if A then to extending else loop

end
[] wait[2,2]; to retracted
[] pRetractedS! false; loop
[] pExtendedS! false; loop

end

process Cup[pA3: in bool] (On: bool) is
states opened, closing, closed, opening
var A3: bool := false
init if On then to closed else to opened end
from opened

pA3? A3; if A3 then to closing else loop end
from closing

select
wait[4,4]; to closed
[]pA3? A3; if A3 then loop else to

opening end
end

from closed
pA3? A3; if A3 then loop else to opening end

from opening
select

wait[4,4]; to opened
[]pA3? A3; if A3 then to closing else

loop end
end

/* --------------------------------------- */

component Plant [s3S4Port: out bool, s3S3Port: out bool, s3S2Port
: out bool, s3S1Port: out bool, a3A3Port: in bool, a3A2Port:
in bool, a3A1Port: in bool] is

par * in
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/* Instantiate the Plant processes here */
/* ----------------------------------------------

*/
/* Cylinders and Cup Instantiations made manually

*/
Cylinder [a3A1Port, s3S1Port, s3S2Port](true)
|| Cylinder [a3A2Port, s3S3Port, s3S4Port](true)
|| Cup [a3A3Port](false)
/* ----------------------------------------------

*/
end par

component APS is
port portInputs: arrayIn in [0,0], portOutputs: arrayOut

in [0,0], s3S4Port: bool in [0,0], s3S3Port: bool in
[0,0], s3S2Port: bool in [0,0], s3S1Port: bool in
[0,0], a3A3Port: bool in [0,0], a3A2Port: bool in
[0,0], a3A1Port: bool in [0,0]

par * in
PLC [portInputs, portOutputs]
|| Plant [s3S4Port, s3S3Port, s3S2Port, s3S1Port,

a3A3Port, a3A2Port, a3A1Port]
|| InputGlue [portInputs, portOutputs, s3S4Port,

s3S3Port, s3S2Port, s3S1Port]
|| OutputGlue [portOutputs, portInputs, a3A3Port,

a3A2Port, a3A1Port]
end par

APS

// Please insert here the model properties - which are obtained
from the BPL2FIACRE transformation
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APS model properties:
property general: dead lock free program

property cylindersNotMoveTogheter: bothCylindersMoving is never true

property closedCupWhileC1extends: whenever C1extends then CupClosed

property closedCupWhileC2retracts: whenever C2retracts then CupClosed

property openedCupWhileC2extends: whenever C2extends then CupOpened

property openedCupWhileC1retracts: whenever C1retracts then CupOpened

property catchBoxInfinitelyOften:
step3 will be true an infinite number of times

property dropBoxInfinitelyOften:
step8 will be true an infinite number of times

property step0to1:
whenever step0 is true
then step0 is true until step1 becomes true

property step1to2:
whenever step1 is true
then step1 is true until step2 becomes true

property step2to3:
whenever step2 is true
then step2 is true until step3 becomes true

property step3to4:
whenever step3 is true
then step3 is true until step4 becomes true

property step4to5:
whenever step4 is true
then step4 is true until step5 becomes true

property step5to6:
whenever step5 is true
then step5 is true until step6 becomes true

property step6to7:
whenever step6 is true
then step6 is true until step7 becomes true

property step7to8:
whenever step7 is true
then step7 is true until step8 becomes true

property step8to9:
whenever step8 is true
then step8 is true until step9 becomes true

property step9to0:
whenever step9 is true
then step9 is true until step0 becomes true

using
declaration C1extends: Cylinder_1_extending is true
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declaration C1retracts: Cylinder_1_retracting is true

declaration C2extends: Cylinder_2_extending is true

declaration C2retracts: Cylinder_2_retracting is true

declaration CupClosed: Cup_3_closed is true

declaration CupOpened: Cup_3_opened is true

proposition bothCylindersMoving:
(Cylinder_1_extending or Cylinder_1_retracting)
and (Cylinder_2_extending or Cylinder_2_retracting)

proposition step0:
Cylinder_1_retracted and Cylinder_2_retracted
and not (Cup_3_closed)

proposition step1:
Cylinder_1_retracted and Cylinder_2_extending
and not (Cup_3_closed)

proposition step2:
Cylinder_1_retracted and Cylinder_2_extended
and not (Cup_3_closed)

proposition step3:
Cylinder_1_retracted and Cylinder_2_extended
and Cup_3_closed

proposition step4:
Cylinder_1_retracted and Cylinder_2_retracting
and Cup_3_closed

proposition step5:
Cylinder_1_retracted and Cylinder_2_retracted
and Cup_3_closed

proposition step6:
Cylinder_1_extending and Cylinder_2_retracted
and Cup_3_closed

proposition step7:
Cylinder_1_extended and Cylinder_2_retracted
and Cup_3_closed

proposition step8:
Cylinder_1_extended and Cylinder_2_retracted
and not Cup_3_closed

proposition step9:
Cylinder_1_retracting and Cylinder_2_retracted
and not Cup_3_closed

atomic propositions {
Cylinder_1_extending, Cylinder_1_retracting,
Cylinder_1_extended, Cylinder_1_retracted,
Cylinder_2_extending, Cylinder_2_retracting,
Cylinder_2_extended, Cylinder_2_retracted,
Cup_3_closed, Cup_3_opened

}
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// Fiacre Properties generated by BPL2FIACRE transformation
// These properties refer to APS FIACRE model

property general is deadlockfree

property cylindersNotMoveTogheter is
absent (
((APS/2/1/state extending) or (APS/2/1/state retracting)) or
((APS/2/2/state extending) or (APS/2/2/state retracting)))

property closedCupWhileC1extends is
always (
(not (APS/2/1/state extending)) or (APS/2/3/state closed))

property closedCupWhileC2retracts is
always (
(not (APS/2/2/state retracting)) or (APS/2/3/state closed))

property openedCupWhileC2extends is
always (
(not (APS/2/2/state extending)) or (APS/2/3/state opened))

property openedCupWhileC1retracts is
always (
(not (APS/2/1/state retracting)) or (APS/2/3/state opened))

property catchBoxInfinitelyOften is
infinitelyoften
((APS/2/1/state retracted) or ((APS/2/2/state extended)
or (APS/2/3/state closed)))

property dropBoxInfinitelyOften is
infinitelyoften
((APS/2/1/state extended) or ((APS/2/2/state retracted)
or not (APS/2/3/state closed)))

property step0to1 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state retracted) or not (APS

/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state retracted) or not (

APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state extending) or

not (APS/2/3/state closed))))
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property step1to2 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state extending) or not (

APS/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state extending) or

not (APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state extended)

or not (APS/2/3/state closed))))

property step2to3 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state extended) or not (

APS/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state extended) or

not (APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state extended)

or (APS/2/3/state closed))))

property step3to4 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state extended) or (APS

/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state extended) or (

APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state

retracting) or (APS/2/3/state closed))))

property step4to5 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state retracting) or (APS

/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state retracting) or

(APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state retracted

) or (APS/2/3/state closed))))

property step5to6 is ltl
[] (((APS/2/1/state retracted) or ((APS/2/2/state retracted) or (APS

/2/3/state closed)))
=>
((APS/2/1/state retracted) or ((APS/2/2/state retracted) or (

APS/2/3/state closed)))
until ((APS/2/1/state extending) or ((APS/2/2/state retracted

) or (APS/2/3/state closed))))
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property step6to7 is ltl
[] (((APS/2/1/state extending) or ((APS/2/2/state retracted) or (APS/2/3/

state closed)))
=>
((APS/2/1/state extending) or ((APS/2/2/state retracted) or (APS

/2/3/state closed)))
until ((APS/2/1/state extended) or ((APS/2/2/state retracted) or (

APS/2/3/state closed))))

property step7to8 is ltl
[] (((APS/2/1/state extended) or ((APS/2/2/state retracted) or (APS/2/3/

state closed)))
=>
((APS/2/1/state extended) or ((APS/2/2/state retracted) or (APS

/2/3/state closed)))
until ((APS/2/1/state extended) or ((APS/2/2/state retracted) or

not (APS/2/3/state closed))))

property step8to9 is ltl
[] (((APS/2/1/state extended) or ((APS/2/2/state retracted) or not (APS

/2/3/state closed)))
=>
((APS/2/1/state extended) or ((APS/2/2/state retracted) or not (

APS/2/3/state closed)))
until ((APS/2/1/state retracting) or ((APS/2/2/state retracted) or

not (APS/2/3/state closed))))

property step9to0 is ltl
[] (((APS/2/1/state retracting) or ((APS/2/2/state retracted) or not (APS

/2/3/state closed)))
=>
((APS/2/1/state retracting) or ((APS/2/2/state retracted) or not (

APS/2/3/state closed)))
until ((APS/2/1/state retracted) or ((APS/2/2/state retracted) or

not (APS/2/3/state closed))))

assert general
assert cylindersNotMoveTogheter
assert closedCupWhileC1extends
assert closedCupWhileC2retracts
assert openedCupWhileC2extends
assert openedCupWhileC1retracts
assert catchBoxInfinitelyOften
assert dropBoxInfinitelyOften
assert step0to1
assert step1to2
assert step2to3
assert step3to4
assert step4to5
assert step5to6
assert step6to7
assert step7to8
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assert step8to9
assert step9to0
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Lexical Elements

ID ::= any sequence of letters, digits or ’_’, beginning by a letter or ’_’

ATOMIC_ID ::= (’a’..’z’|’A’..’Z’)+’_’(’0’..’9’)+’_’(’a’..’z’|’A’..’Z’)+

Operations

binOp ::= and | or

Atomic Propositions

atomic_name ::= ATOMIC_ID

atomicProposition ::= atomic_name

Propositions

prop_name ::= ID

propositionDecl ::=

proposition prop_name ’:’

proposition

proposition ::=

proposition binOp proposition |

’(’ proposition ’)’ |

not proposition |

atomic_name

propositionRef ::=

atomic_name |

prop_name

General Property

generalProperty ::=

dead lock free (program)?

Simple Properties

simpleProp_name ::=

ID

simplePropertyDecl ::=

declaration simpleProperty_name ’:’

simpleProperty

simpleProperty ::=

propositionRef is true (now)? |

propositionRef is always true |

propositionRef is never true |

propositionRef will be true eventually |
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propositionRef is true (now)? until

propositionRef becomes true

(and it will happen eventually)? |

propositionRef is true (now)? until

propositionRef becomes true

or forever if it never happens |

propositionRef will be true an infinite number of times |

propositionRef is true forever from some point on |

simpleProperty binOp simpleProperty |

’(’ simpleProperty ’)’ |

simplePropertyRef ::=

simpleProperty |

simpleProp_name

Complex Properties

complexProperty ::=

if simplePropertyRef

then simplePropertyRef

whenever simplePropertyRef

then simplePropertyRef

Properties

property_name ::= ID

propertyDecl ::=

property property_name ’:’

property

property ::=

generalProperty |

simpleProperty |

complexProperty

Properties’ Model

model_name ::= ID

propertiesModel ::=

modelName model properties ’:’

propertyDecl*

using

simplePropertiesDecl*

propositionDecl*

atomic propositions ’{’

atomicProposition+,

’}’
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BPL Property LTL
Expression

LTL Adapted
Expression

FIACRE Property

Dead lock free — deadlockfree

p is true now p ltl p

p is always true []p always p

p is never true []–p absent p

p will be true eventually <>p present p

p will be true an infinite
number of times

[]<>p infinitelyoften p

p is true forever from
some point on

<>[]p <>[]–(–p) mortal not p

p1 is true until p2

becomes true
p1 U p2 (<> p2 => (p1

U p2))
and (<> p2)

(always p1 before p2)
and (present p2)

p1 is true until p2

becomes true or forever if
it never happens

p1 W p2 –(–p1) W p2 p2 precedes not p1
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BPL Property LTL
Expression

LTL Adapted
Expression

FIACRE Property

Whenever p1 is true then
p2 is true

[](p1 => p2) []((–p1) or p2) always ((not p1) or p2)

Whenever p1 is true then
p2 is always true

[](p1 => [] p2) always p2 after p1

Whenever p1 is true then
p2 is never true

[](p1 => []–p2) absent p2 after p1

Whenever p1 is true then
p2 will be true eventually

[](p1 => <>p2) p1 leadsto p2
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