
Distributed Contract Negotiation for Decentralised Supervisory Control
beyond Two-Component Architectures

Ana Maria Mainhardt and Anne-Kathrin Schmuck

Abstract— We study the control problem of distributed dis-
crete event systems with a privacy aspect. Each component of a
system may synchronise with one or more groups of components
through different sets of shared events. For each group a
component belongs to, its behaviour in terms of its nonshared
events (with respect to that group) should remain private. To
synthesise decentralised supervisors local to each component,
we propose a contract-based negotiation method. A contract
describes an agreement among the members of each group.
This allows cooperation in disabling shared events, which might
not be controllable by all components, in order to guarantee
the specifications are met. This work extends our previous
results, where only two subsystems with local specifications
were considered, to allow more complex architectures and
nonlocal specifications. We identify cases where there is no need
for coordinators nor the communication of nonshared events,
respecting privacy both during the synthesis and the execution
of the supervisors, even if for some systems that comes at the
cost of maximal permissiveness.

I. INTRODUCTION

Assume-guarantee contracts are a well established
paradigm in distributed system design and have a longstand-
ing history – see e.g. [1], [2]. The main idea of contract-
based design is to decouple dependent distributed processes
by compatible contracts which must be locally satisfied
by each component to achieve a desired global behaviour.
The advantages of contract-based design are threefold: (i)
decentralised design, i.e., controllers can be synthesised and
executed locally; (ii) information privacy, i.e., apart from
what is specified by the contracts, no detailed information
about a process’ behaviour is shared with the rest of the sys-
tem; and (iii) decoupled maintenance, as contract-compatible
adaptations in a component do not affect others.

Contract-based supervisory synthesis (CBSS) [3], [4]
tailors this paradigm to distributed discrete-event systems
(DES). Here, processes of a system, also called plant, syn-
chronise via shared events and are controlled by supervisors
local to each process, or components of a plant. In this
context, compatible contracts model required behavioural re-
strictions of all processes solely in terms of events they share.
Our previous work [3], [4] introduced a two-component
CBSS framework for cosynthesising such compatible con-
tracts and their enforcing local supervisors (schematically
depicted in Fig. 1). In this paper, we generalise this approach

Both authors are funded through the DFG Emmy Noether grant SCHM
3541/1-1. A. Schmuck is also partially funded through the DFG collabora-
tive research center 389792660 TRR 248 – CPEC.

Both authors are with the Max-Planck Institute for Software Systems,
Kaiserslautern, Germany (e-mail: {amainhardt,akschmuck}@mpi-sws.org).

to multicomponent architectures. This introduces new chal-
lenges for privacy preservation, as each plant may synchro-
nise with multiple groups of components through different
sets of shared events. Our framework ensures that for each
group a component belongs to, its behaviour in terms of its
nonshared events (with respect to that group) remains private.

Ensuring nonconflict, i.e., nonblocking global behaviour
among the locally supervised processes is a critical step in
decentralised DES. In particular for CBSS, where supervisors
are designed locally and do not observe private events of
other processes they synchronise with over their shared
events. In the two-component case, our previous approach
[3], [4] identifies and is capable of enforcing sufficient local
conditions to guarantee nonconflict by construction in the
context of CBSS (see Fig. 1) – without communicating
private events (as e.g. in [5]–[7]) or the utilisation of a
coordinator, i.e., an additional supervisor that coordinates the
control actions of the local ones (see [8]). Unfortunately, in
multicomponent systems, circular dependencies often arise,
making coordination unavoidable.

Our contribution lies in identifying minimal coordination
scopes: when coordination is necessary, we limit it to a
small subset of processes, preserving privacy elsewhere. In
particular, we introduce basic architectures and combinations
thereof that still allow to enforce nonconflict locally, pre-
serving privacy. Moreover, as a byproduct of our ability to
handle multicomponent systems, we can incorporate nonlo-
cal specifications and predefined coordinators as additional
components without additional formalisation.

Applications of our novel CBSS framework span scenar-
ios where both decentralisation and privacy are essential.
For instance, control nodes managing the usage and pricing
of private renewable energy sources must keep decision
mechanisms confidential, while still requiring coordination
to ensure grid stability. Another example involves inter-
vehicle coordination in autonomous traffic, where vehicles
collaboratively negotiate right-of-way rules based on shared
traffic signals, without revealing proprietary driving models
or sensor data. Observing page constrains, we limit the
exposition in this paper to the theoretical foundations of
multicomponent CBSS, leaving experiments to future work.

Related work in distributed supervisory control, e.g. [5]–
[7], [9], does not emphasise privacy of nonshared events
during synthesis and deployment. On the other hand, related
work in formal methods typically uses alternating games on
graphs to model component interaction, e.g. [10]–[12], where
nonconflict is trivially fulfilled. Enforcing nonconflict while
preserving privacy is a contribution unique to CBSS.

II. PRELIMINARIES

A. Languages and Automata Basics

Strings. Let Σ be a finite alphabet, which is a nonempty
set of symbols σ ∈ Σ representing the events of a DES. The
Kleene-closure Σ∗ is the set of finite strings s = σ1σ2 · · ·σn,
with n ∈ N and σi ∈ Σ, including the empty string ϵ ∈ Σ∗,
with ϵ ̸∈ Σ. If, for two strings s, r ∈ Σ∗, there exists t ∈ Σ∗

such that s = rt, we say r is a prefix of s, and write r ≤ s.
Sets. For any two sets A and B, denote by A×B and A\B,
respectively, their Cartesian product and set difference. The
cardinality of A is denoted by |A|. If A = {a1, . . . , an}, we
write A = {ai}I for I = {1, . . . , n}. If ai is any constant
value a for all i, we write A = {a}I .
Languages. A language over Σ is a subset L ⊆ Σ∗. The
prefix of a language L ⊆ Σ∗ is defined by L := {r ∈
Σ∗ | ∃s ∈ L : r ≤ s}. The prefix operator is also referred to
as the prefix-closure, and a language L is closed if L = L. A
language K is relatively closed with respect to L, or simply
L-closed, if K = K∩L. The prefix operator distributes over
arbitrary unions of languages. However, for the intersection
of two languages L and M , we have L ∩M ⊆ L ∩M . If
equality holds, L and M are said to be nonconflicting.
Projections. Given alphabets Σ and Σi ⊆ Σ, the natural
projection Pi : Σ∗ → Σ∗

i is defined recursively by: (i)
Pi(ϵ) = ϵ, and (ii) for all σ ∈ Σ and s ∈ Σ∗, if σ ∈ Σi, then
Pi(sσ) = Pi(s)σ, otherwise Pi(sσ) = Pi(s). We define the
inverse projection P−1

i : Σ∗
i → 2Σ

∗
by P−1

i (si) = {s ∈
Σ∗ | Pi(s) = si} for all si ∈ Σ∗

i . These functions can be
extended from strings to languages, with Pi : 2Σ

∗ → 2Σ
∗
i

defined such that, for any L ⊆ Σ∗, Pi(L) = {si ∈ Σ∗
i | ∃s ∈

L : Pi(s) = si}. In turn, P−1
i : 2Σ

∗
i → 2Σ

∗
is given by

P−1
i (Li) = {s ∈ Σ∗ | Pi(s) ∈ Li} for any Li ⊆ Σ∗

i .
Automata. A deterministic finite automaton (automaton for
short) is a tuple Λ = (Q, Σ, δ, q0, Qm), with finite state
set Q, initial state q0 ∈ Q, marked states Qm ⊆ Q, and
deterministic transition function δ : Q×Σ→ Q, which can
be partial and also be viewed as a relation δ ⊆ Q×Σ×Q.
We identify δ with its extension to the domain Q × Σ∗, or
as δ ⊆ Q × Σ∗ × Q. Let δ(q, s)! indicate that δ is defined
for q ∈ Q and s ∈ Σ∗; for all q ∈ Q, we have δ(q, ϵ) = q;
for s ∈ Σ∗ and σ ∈ Σ, we have δ(q, sσ)!, with δ(q, sσ) =
δ(δ(q, s), σ)), if and only if δ(q, s)! and δ(δ(q, s), σ))!. We
say Λ is nonempty if Q ̸= ∅.
Reachability and Nonblockingness. A state q ∈ Q is
reachable if there exists s ∈ Σ∗ such that q = δ(q0, s), and it
is coreachable if there exists s ∈ Σ∗ such that δ(q, s) ∈ Qm.
Non coreachable states are also referred to as blocking states.
If all reachable states in Λ are coreachable, then Λ is
nonblocking. Moreover, Λ is called reachable (respectively
coreachable) if all states are reachable (resp. coreachable),
and Λ is called trim if it is reachable and coreachable.
Semantics. For Λ = (Q, Σ, δ, q0, Qm), we associate the
generated language L(Λ) := { s ∈ Σ∗ | δ(q0, s)! } and the
marked language Lm(Λ) := { s ∈ Σ∗ | δ(q0, s) ∈ Qm }.
These two languages are the semantics of Λ, and Λ rec-
ognizes, or accepts, the language Lm(Λ). Moreover, we say

two automata Λ1 and Λ2 are equivalent if their semantics
coincide, i.e., we write Λ1 ≡ Λ2 iff L(Λ1) = L(Λ2) and
Lm(Λ1) = Lm(Λ2); if they are not equivalent, we write
Λ1 ̸≡ Λ2. Note that Λ is nonblocking if and only if L(Λ) =
Lm(Λ). To simplify notation, we use boldface characters,
e.g. Λ, to denote an automaton, and the corresponding
normal character, e.g. Λ, for its marked language.
Product and Composition. The synchronous product of
languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2, where Σi, for i ∈ {1, 2},

are arbitrary alphabets, is defined as L1 ∥ L2 := P−1
1 (L1)∩

P−1
2 (L2) over Σ1 ∪ Σ2. Given two automata Λi over Σi,

their synchronous composition Λ1 ∥ Λ2 is defined such that
L(Λ1 ∥ Λ2) = L(Λ1) ∥ L(Λ2) and Lm(Λ1 ∥ Λ2) = Λ1 ∥
Λ2. That is, only shared events σ ∈ Σs = Σ1 ∩ Σ2 require
synchronisation of the corresponding transitions.
Observer Automaton. For an automaton Λ over Σ =
Σs∪̇Σp, its observer OΛ,Σs is an automaton over Σs built
in such a way that it generates and accepts the languages
Ps(L(Λ)) and Ps(Λ), respectively, where Ps : Σ∗ → Σs∗.
Its construction and properties are described in [13].

B. Supervisory Control

For a more didactic coverage, see the textbooks [13] and [8].
Plant Model. A plant is a system to be supervised, modelled
as an automaton M over Σ. Typically Σ := Σc∪̇Σuc, where
Σc is the set of controllable events – those that can be
prevented from happening (i.e. disabled) – and Σuc is the
set of uncontrollable ones – that cannot be disabled.
Plantified specification. For any prefix-closed specification
language E over Σ′ ⊆ Σ, the language K = M ∥ E
describes the desired behaviour of M, and it is M -closed.
We call a plantified specification of M an automaton K that
accepts K and such that: (i) L(K) ⊆ L(M), and (ii) for all
s ∈ K, and for all σ ∈ Σ, sσ ∈ L(K) if sσ ∈ L(M). We
note that K is generally blocking. Further, specification and
plantified specification are not interchangeable concepts.
Controllability. A language L over Σ is controllable with
respect to L(M) and Σuc if, for all σ ∈ Σuc, s ∈ L ∧ sσ ∈
L(M) ⇒ sσ ∈ L . Define the set C(L) := {L′ ⊆ L |L′ is
controllable w.r.t. L(M) and Σuc}, whether L is controllable
or not. This set is nonempty, since the empty language is
trivially controllable. As controllability is closed under union
of languages, it can be shown that the supremum element
of C(L), denoted supC(L), is given by

⋃
L′∈C(L) L

′ and is
controllable, i.e., belongs to C(L).
Supervisor. A supervisor for a plant M with alphabet Σ :=
Σc∪̇Σuc is a mapping f : L(M) → Γ, where Γ := {γ ⊆
Σ |Σuc ⊆ γ} ⊆ 2Σ is the set of control patterns. Let us
denote by f/M the plant M under supervision of f . The
generated language of f/M is defined recursively such that
ϵ ∈ L(f/M) and, for all s ∈ Σ∗ and σ ∈ Σ, sσ ∈ L(f/M)
iff (i) s ∈ L(f/M), (ii) sσ ∈ L(M), and (iii) σ ∈ f(s). This
induces the marked language Lm(f/M) := L(f/M) ∩M ,
which is controllable by definition. Note that L(f/M) is
closed and L(f/M) ⊆ L(M). We call f nonblocking if
L(f/M) = Lm(f/M). In this case, the closed loop can be

represented by a trim automaton S that accepts Lm(f/M);
we then say that S realises f/M and denote this by S ∼ f .
Supervisor Synthesis Problem. Given a plant M and a
plantified specification K over Σ := Σc∪̇Σuc, the control
problem is to synthesise the maximally permissive supervi-
sor f that respects the specification – i.e., Lm(f/M) =
supC(K), with controllability taken with respect to L(M)
and Σuc – and that imposes a nonblocking closed-loop
behaviour – i.e., L(f/M) = Lm(f/M). To synthesise f ,
it is possible to compute a trim automaton S ∼ f by
manipulating the plantified specification K (see [13, p.186]).

C. Cooperative Decentralised Supervisory Control

Distributed Plant. A plant is a finite set M = {Mi}I ,
for I = {1, . . . , n}. Each local component i ∈ I is
modelled as an automaton Mi and equipped with a plantified
specification Ki, both over the local alphabet Σi. The global
alphabet ofM is given by Σ =

⋃
i Σi. We use the convention

that i, j are always taken from I . For any i ̸= j, denote
Σi ∩ Σj by Σi,j . The alphabet of shared events of i is
then Σs

i =
⋃

j ̸=i Σi,j . A local alphabet is partitioned into
Σi = Σp

i ∪̇Σs
i , where Σp

i is the set of private events of i. We
assume that Σp

i may contain controllable and uncontrollable
events, meaning Σp

i = Σp
i,c∪̇Σp

i,uc. We denote by Pis and Pi

the natural projections Pis : Σ
∗
i → Σs

i
∗ and Pi : Σ

∗ → Σ∗
i .

Cooperative Supervisor Synthesis. Following [3]–[5], com-
ponents are not required to agree on the controllability
status of the events they share. However, for simplicity1,
we assume that for any component i, and for any σ ∈ Σs

i ,
there is j (possibly j = i) such that σ is controllable by
j. Thus, we have that Σs

i = Σs
i,c∪̇Σs

i,cp, where Σs
i,c are

shared events controllable by i, and Σs
i,cp are shared events

uncontrollable by i, but controllable by some j ̸= i. The
subscript cp stands for cooperation. Similar to the classical
supervisor synthesis problem defined in Sec. II-B, in CBSS
we synthesise local supervisors fi for the components Mi by
computing trim automata Si obtained from Ki. Moreover,
to enhance permissiveness, these supervisors should assist
each other in achieving joint control, as events in Σs

i,cp

are globally controllable (see [4]). In order to achieve the
desired cooperation, we then utilise the following conditions
for controllability and a local synthesis procedure CSYNTH
based on the uncontrollable event set Σp

i,uc, instead of the
actual locally uncontrollable event set Σi,uc = Σp

i,uc∪̇Σs
i,cp.

Condition 1: For any automaton Λi over Σi, we define
the following requirements:

1) L(Λi) ⊆ L(Mi) and Λi ⊆Mi;
2) (∀s ∈ Λi, ∀σ ∈ Σp

i,uc)
(
sσ /∈ Λi and sσ ∈ L(Mi)

)
→

sσ ∈ L(Λi).
Definition 1: For an automaton S0

i over Σp
i,c ∪̇ Σp

i,uc ∪̇
Σs

i,c ∪̇ Σs
i,cp, the cooperative synthesis function CSYNTH is

defined such that CSYNTH(S0
i) is a trim automaton accepting

the language supC(S0
i) with respect to S0

i and Σp
i,uc. □

1See [4] on how two-component plants can be treated when this assump-
tion does not hold. While the approach from [4] can be directly incorporated
in the multicomponent setting discussed in this paper, we refrain from doing
so to simplify the approach as we observe page constraints.

Remark 1: Let S0
i be an automaton that satisfies Cond. 1

(e.g., the plantified specification Ki). Then supC(S0
i) with

respect to Mi and Σp
i,uc is the same as with respect to S0

i

and Σp
i,uc. Moreover, CSYNTH(S0

i) also satisfies Cond. 1,
and CSYNTH can be implemented using existing techniques.
Local Property for Global Nonblockingness. Let Si be
automata used to extract local supervisors fi. As in the case
of CBSS for two components ([3], [4]), here we also require
Si to satisfy the following local property so that fi impose
a nonblocking global behaviour.

Definition 2 ([4]): The language Si is unambiguous with
respect to Σg ⊆ Σi if, for any s, s′ ∈ Si such that Pig(s) =
Pig(s

′), where Pig : Σ∗
i → Σg∗, we have that:

1) (∀σ ∈ Σg) sσ ∈ Si ⇒ (∃s′′ ∈ Σ∗
i)

s′ ≤ s′′, Pig(s
′′) = Pig(s

′) and s′′σ ∈ Si; and
2) s ∈ Si ⇒ (∃s′′ ∈ Σ∗

i)
s′′ ≤ s′or s′ < s′′, Pig(s

′′) = Pig(s
′) and s′′ ∈ Si; □

In [4] we introduce a procedure called ENFORCERU
which locally checks if unambiguity is satisfied, and if not,
enforces a slightly stronger version called relative unambigu-
ity, as unambiguity is not closed under union of languages.

Remark 2: For an automaton S0
i satisfying Cond. 1, the

automaton ENFORCERU(S0
i ,Σ

g) also satisfies Cond. 1, and
its accepted language is unambiguous with respect to Σg .
Moreover, if S0

i accepted language is already unambiguous
with respect to Σg , then S0

i ≡ ENFORCERU(S0
i ,Σ

g). □
Signalling Bits. In order to extract from Si local supervisors
fi that actually exhibit the intended cooperation whenever
required – i.e. when Σs

i,cp ̸= ∅ – as in [4] we propose the
use of a signalling bit for each shared event σ ∈ ⋃

i∈I Σ
s
i,cp.

We define Σd = {dσ |σ ∈ Σs
i,cp and i ∈ I}, where dσ

models the bit corresponding to σ having value one, which
represents a request for supervisor i that controls σ to disable
it. We further define Σd

i→ = {dσ |σ ∈ Σs
i,cp} and Σd

→i =
Σd ∩ {dσ |σ ∈ Σs

i,c} as the requests that can be made by or
for i, corresponding to the bits that can be written or read by
i, respectively. The use of these bits does respect the given
privacy concerns, as discussed in more details in [4]. It is
different from what is called communication in the literature
– e.g. in [6] – where a subset of the private events needs to be
always observed by other supervisors, i.e., every occurrence
of such events is communicated. Here, when supervisor i
reads one in the bit relative to σ, it cannot know who set that
bit to one, nor which (or how many) of their private events
triggered this. Moreover, in principle i cannot even infer this
information, as our approach does not share – apart from
the contract that is only described in terms of the shared
events – the local model of each subsystem, neither during
the synthesis nor the execution of the supervisors.
Global vs. Local Supervisor Synthesis Problem. Sum-
marising the above discussion, this paper tackles the follow-
ing decentralised supervisor synthesis problem:

Problem 1: Find local supervisors fi : L(Mi)× 2Σ
d
→i →

Γi such that the global closed-loop behaviour satisfies the
specifications and is nonblocking, that is, ∥i Lm(fi/Mi) ⊆
∥i Ki and ∥i L(fi/Mi) = ∥i Lm(fi/Mi), where the
languages L(m)(fi/Mi) are defined from fi as in Sec. II-B.

Negotiation (local view) Local Property Check

Si ← Ki; *

{
Si ← CSynth(Si);

Ŝi ← Si;
Si

?≡ Ŝi

update contracts Si ← Ŝi||contracts;

send
contracts

wait for
contracts

no
{
S′
i ← Si;

Si ← EnforceRU(S′
i,Σ

g);

Si
?≡ S′

i

*

no

†

†

Si

yes

no

no

yes

yes

yes

Fig. 1. Simplified local overview of CBSS for component i. Functions
CSYNTH and ENFORCERU are as in Def. 1 and Rem. 2, respectively.
Symbol † stands for “Have other subsystems updated their contracts?”.
Synthesis is initialised with plantified specifications Ki, and terminates
when all components locally converged – i.e., when they are locally
nonblocking, satisfy the local property, and have compatible contracts. Local
supervisors fi are extracted from Si upon termination (see Sec. VIII-A).

III. OUTLINE AND CONTRIBUTION

This paper extends existing contract-based supervisor syn-
thesis (CBSS) frameworks [3], [4], as depicted in Fig. 1, from
two to multicomponent architectures. What distinguishes
CBSS from other solutions to Problem 1 is its strong
emphasis on privacy – both during synthesis and during
execution, components have solely access to their observed
interaction with other components via shared events. In order
to still remain permissive, CBSS iteratively refines contracts
which represent cooperative agreements.
Contract Negotiation. In multiprocesses architectures, com-
ponents might share different set of events, let us say Σg ,
with different groups g of components (formally defined
in Sec. IV). Thus, in contrast to [3], [4], each component
i needs to negotiate different contracts Cg

i , one for each
group g that i belongs to. As the behaviour of a process
in terms of its private events (with respect to each group)
should remain private, we define Cg

i := OSi,Σg
2. For two

components i, j with shared events Σi,j = Σg , we say
they have compatible contracts iff Cg

i ≡ Cg
j . For the

synthesis of the local supervisors, we then iteratively refine
the automata Si, update their contracts Cg

i , and negotiate
these contracts among members of each group, as illustrated
by the Negotiation box in Fig. 1. These iterations terminate
when contract-compatibility and local nonblockingness of Si

are achieved, as formalised in Sec. V. In particular, we show
in Sec. VI that negotiation is permissive and does not overly
restrict the behaviour of the plant.
Ensuring Nonconflict. After negotiation, we still need to
check whether each language Si locally satisfies the property
of unambiguity, as introduced in Sec. II-C. If not satisfied,
then it is enforced over Si, which might compromise local

2In our prior work [3], [4] we define the contracts as Ci := OSj ,Σs .
Here, in contrast, we define Cg

i := OSi,Σg , such that the contract with
subscript i is not the observer of other component j, but of i itself. The
reason is the following. In [3], [4] we consider only two processes, so
there is only one other component j ̸= i, and only one group with shared
alphabet Σs instead of Σg . Here, each component exchanges contracts with
not only one, but possibly multiple other components from groups g, which
are represented by the superscript g in the contract.

nonblockingness, controllability and contract-compatibility,
requiring further negotiation, as illustrated by the Local
Property Check box in Fig. 1. Moreover, enforcing this
property might imply sacrificing maximally permissiveness
in favour of privacy. In Sec. VII we identify multicomponent
architectures for which unambiguity, in the context of CBSS,
is sufficient to guarantee nonconflicting supervisors.
Enhanced Flexibility. By considering beyond-two-
component architectures, we are able to deal with
nondecomposable specifications spanning multiple
components, as we explain in Sec. IV-A. This scenario
was not tackled in [3], [4], where only local specifications
were allowed. Moreover, in Sec. VII-C we show how
coordinators can be obtained under our CBSS approach in
systems with architectures that require trading privacy for
conflict resolution.
Completing the Picture. As a final result of all contributions
discussed above, we show in Sec. VIII that cooperative
local supervisors extracted from the output of our novel
multicomponent CBSS framework indeed solve Problem 1
with a strong emphasis on permissiveness and privacy.

IV. COMPONENT ARCHITECTURES

This section formalises how component architectures in-
duce groups for negotiation, and explains the resulting flex-
ibility of our framework by showing how nondecomposable
(nonlocal) specifications can be incorporated as additional
components in the CBSS framework.

There are multiple distinct ways how components can be
combined into groups based on the events they share, and
such that the final result of CBSS is provably correct. In
this paper, we choose a group definition more convenient
for the proofs. Concretely, we form groups such that every
possible pair of elements in a group shares exactly the same
set of events, and all components in a system are associated
with as many groups as possible, as long as it respects the
previous rule. In Fig. 2, 3 and 4, we illustrate few possible
architectures of plants based on the groups they can form.

Definition 3: For a plant M = {Mi}I , and for all g =
(Ig,Σg) ∈ 2I × (2Σ\{∅}), we say g is a group if and only
if: (i) for all i, j ∈ Ig we have Σi,j = Σg , and (ii) for
all i ∈ I\Ig , there is j ∈ Ig such that Σi,j ̸= Σg . Define
the projections Pig : Σ∗

i → Σg∗ for all g ∈ Ig . Denote by
G = {gk}K , with K = {1, . . . ,m}, the set of all groups for
the plantM. Moreover, denote by Gi = {g ∈ G | i ∈ Ig} the
set of all groups to which i belongs, for all i ∈ I .

A. Plants with Nonlocal Specifications

Within the framework presented here, we can also impose
nonlocal specifications, which cannot be decomposable into
local ones. This is a consequence of extending our results
from [4] to systems formed by more than two components.
Consider then any prefix-closed specification language E
over Σ′ ⊆ Σ that cannot be decomposable into local
alphabets Σi. Denote by E the trim automaton that accepts
E. Then, in order to obtain a supervisor SE that guarantees
E is satisfied, we need to add a component ME in the plant

M, as follows. Define ME as the single state automaton that
accepts and generates Σ′∗, and use the product ME ∥ E as
its plantified specification KE . Note that defining ME this
way guarantees controllability is respected.

V. MULTICOMPONENT CBSS

This section presents our novel multicomponent contract-
based supervisor synthesis (CBSS) framework, as schemati-
cally depicted in Fig. 1 and formalised in Proc. 1 and Proc. 2.
The CBSS procedure starts by calling NEGOTIATION. In
the first round of NEGOTIATION, the automata S0

i of all
components i are refined by the local synthesis procedure
CSYNTH. Next, contracts Cg

i are drawn for all components
i, and all groups g to which i belongs. All these contracts
are then exchanged among members of the same group,
for all groups g ∈ G. From the second round on, local
synthesis CSYNTH is redone and new contracts Cg

i are drawn
again only for the automata Si on which the assimilation of
the received contracts altered the previous computation of
CSYNTH. Then, only the components that are in the same
group as a component that produced a new contract will
be altered again. Convergency occurs when the exchange
of contracts do not affect the outcome of CSYNTH for all
components i. NEGOTIATION then outputs all the automata
Si, and also a variable changedi indicating whether the
output Si is equivalent to the input S0

i .
In CBSS, the set WhereToEnforceRU indicates all pos-

sible pairs of components and groups they belongs to, as
the local property of unambiguity should be checked and,
if needed, enforced for all these pairs. After NEGOTIA-
TION, CBSS picks and removes a pair (i, g) from the set
WhereToEnforceRU with the function Popp. Then, for this
pair, ENFORCERU checks if Si satisfies unambiguity with
respect to Σg . If it does, enforcedOnOne is set to false (as
the property did not need to be enforced), and a new pair is
chosen, until either no pair is left – meaning the property is
satisfied locally by all components, and with respect to all
groups they belongs to – or until the property is enforced for
some pair. In the first case, CBSS terminates; in the latter
case, NEGOTIATION is called again.

Procedure 1 CBSS
Require: Automata {S0

i }I .
1: WhereToEnforceRU← {(i, g) ∈ I × G|i ∈ g}
2: {Si, changedi, synthi}I ← {S0

i ,false,true}I
3: repeat
4: {Si, changedi}I ← NEGOTIATION({Si, synthi}I)
5: {synthi}I ← {false}I
6: if ∃i such that Si is the empty automaton then return {Si}I
7: for i ∈ I such that changedi and g ∈ Gi do
8: WhereToEnforceRU← WhereToEnforceRU ∪ {(i, g)}
9: enforcedOnOne← false, i← −1

10: while WhereToEnforceRU ̸= ∅ and ¬enforcedOnOne do
11: (i, g)← Popp(WhereToEnforceRU)
12: (Si, enforcedOnOne)← ENFORCERU(Si,Σ

g)
13: if enforcedOnOne then synthi ← true

14: if ∃i such that Si is the empty automaton then return {Si}I
15: if ¬enforcedOnOne then i← −1
16: until i ̸= −1
17: return {Si}I

Procedure 2 NEGOTIATION
Require: Automata {S0

i }I . Optional: Boolean variables {synthi}I
(otherwise, assume {synthi}I = {true}I).

1: {Si, Ŝi}I ← {S0
i , ∅}I , {setOfNewCg}G ← {∅}G

2: {comparei, drawCi, changedi}I ← {false,false,false}I
3: cond← True
4: while cond do
5: cond← False
6: for i ∈ I do
7: if comparei then
8: synthi ← (Ŝi ̸≡ Si), comparei ← False
9: changedi ← changedi or synthi

10: if synthi then
11: S′

i ← CSYNTH(Si), cond← True
12: if S′

i ̸= Si then
13: Si ← S′

i, changedi ← True
14: if Si is the empty automaton then
15: return

(
{Si, changedi}I

)
16: for g ∈ Gi do
17: Cg

i ← OSi,Σg , setOfNewCg ← setOfNewCg ∪ {Cg
i }

18: synthi ← False,
19: Ŝi ← Si

20: for g ∈ G such that setOfNewCg ̸= ∅ do
21: newCg ←∥C∈setOfNewCg C
22: for i ∈ Ig do
23: Si ← Si ∥ newCg , comparei ← True
24: if Si is the empty automaton then
25: return

(
{Si, changedi}I

)
26: setOfNewCg ← ∅
27: return

(
{Si, changedi}I

)

VI. MAXIMAL PERMISSIVENESS OF NEGOTIATION

This section shows that the desired maximal permissive-
ness of contract negotiation carries over from the two- to the
multicomponent setting.

Lemma 1: Let {S0
i }I be automata satisfying Cond. 1,

and {Si}I be the outputs of Proc. 2 with {S0
i }I as its

inputs, namely, ({Si}I) = NEGOTIATION({S0
i }I). Then

each automaton in {Si}I is trim and also satisfies Cond. 1.
Moreover, for all g ∈ G, there is a contract Cg over Σg such
that Cg ≡ Cg

i = OSi,Σg for all i ∈ Ig . □
Proof: It is easy to show by induction that the automata

{Si}I satisfy Cond. 1, as the only operations performed
on Si during NEGOTIATION are CSYNTH and the product
by contracts. CSYNTH, by Sup. Rem. 1, preserves this
condition, and the product by contracts Cg preserves it too,
as the synchronisation only happens over shared and not
private events Σp

i . Denote by Ŝk
i and Sk

i the values of Ŝi

and Si at the end of the k-th round of negotiation, i.e., at
line 19 in NEGOTIATION, for k ≥ 1. Given the initial value
of the boolean variables in the procedure, all components
are forced to exchange contracts among the members of the
groups they belong to. Thus, it is easy to show by induction
on the number of rounds k that, for all i ∈ I , for all g ∈ Gi,
and for all j ∈ Ig , Sk

i = Ŝk
i ∥

(
∥g∈Gi∥j∈g OŜk

j ,Σ
g

)
. To see

that, just note that in a round k, either Sk
i receives a new

contract OŜk
j ,Σ

g , if Ŝk
j ̸= Ŝk−1

j , or it does not, because Ŝk
j

did not change from the previous round, i.e., Ŝk
j = Ŝk−1

j ,
so Sk

i already incorporates that contract. Finally, as the fix
point is reached when Ŝk

i = Sk
i holds, for some k > 1,

and for all i ∈ I , we have that PjgL(Sj) ⊆ PigL(Si) and

PjgSj ⊆ PigSi. As this is true for all i ∈ I , we have that
PjgL(Sj) = PigL(Si) and PjgSj = PigSi, for all g ∈ Gi,
and for all j ∈ Ig .

With this, we can prove the main result of this section,
namely that NEGOTIATION does not remove any more states
and transitions than the necessary to obtain the supremal
controllable sublangage of the composition of its inputs.

Theorem 1: Let {S0
i }I be automata satisfying Cond. 1,

and ({Si}I) = NEGOTIATION({S0
i }I). We then have that

supC
(
∥i∈I Si

)
= supC

(
∥i∈I S0

i

)
, where supC is taken with

respect to L(∥i∈I Mi) and
⋃

i∈I Σ
p
i,uc. □

Proof: This proof is a generalisation from two to more
components of the proof of Theorem 1 in [4]. To see that,
just observe the definition of CSYNTH, Lem. 1, Rem. 1,
and the following facts. First, note that components do not
synchronise over their private events Σp

i , for all i ∈ I , and
that here we assume any event shared event between at least
two components is controllable by at least one of them (so
in [4], Σs

uc = ∅). Finally, note that Ŝk
i = CSYNTH(Sk−1

i)
for all i ∈ I , for the following reasons (consider Ŝk

i and
Sk
i as in the proof of Lem. 1). For k = 1, we have that

Ŝ1
i ← CSYNTH(S0

i), as line ?? is executed for all i ∈ I . For
k > 1, this line is not executed iff Si did not receive any
new contract in the previous round, or iff this exchange did
not affect the semantics of Si, i.e., iff Ŝk−1

i = Sk−1
i .

However, this does not yet constitute a solution to Prob-
lem 1, as NEGOTIATION may not remove enough to guar-
antee that the resulting composed system is nonblocking.
This is only the case if the output of NEGOTIATION is
nonconflicting, as formalised next.

Corollary 1: Let {S0
i }I be automata satisfying Cond. 1,

and ({Si}I) = NEGOTIATION({S0
i }I). If {Si}I are non-

conflicting, i.e., if ∥i∈I Si is nonblocking, we have that
∥i∈I Si = supC

(
∥i∈I S0

i

)
, where supC is taken with respect

to L(∥i∈I Mi) and
⋃

i∈I Σ
p
i,uc. □

Proof: This proof is a generalisation from two to more
components of the proof of Corollary 1 in [4], if we note
the definition of CSYNTH, and the following. Components
do not synchronise over their private events Σp

i , for all i ∈ I ,
and here we assume any event shared event between at least
two components is controllable by at least one of them (so
in [4], Σs

uc = ∅).
By combining Lem. 1 and Cor. 1, we see that a solution

to Problem 1 requires to additionally enforce nonconflict.
This is achieved via ENFORCERU (line 12 in Proc. 1, and
described in Sec. II-C) for particular classes of architectures,
as discussed next.

VII. ADMISSIBLE ARCHITECTURES FOR NONCONFLICT

This section discusses how nonconflict can be enforced in
a local, privacy-preserving manner for a class of admissible
architectures, formalised in Sec. VII-A. Thereafter, we show
how such architectures can be composed to larger admissible
architectures in Sec. VII-B. If admissibility cannot be guar-
anteed, Sec. VII-C discusses how local coordinators can be
incorporated to ensure nonconflict.

A. Admissible Architectures

We call a plant M = {Mi}I with the set of groups G =
{gk}K admissible, if the following hypothesis holds.

Hypothesis 1: Let {S0
i }I be automata satisfying Cond. 1,

and ({Si}I) = NEGOTIATION({S0
i }I). If, for all i ∈ I ,

and for all g ∈ Gi, we have that {Si}I is unambiguous
with respect to Σg and the natural projection Pig , then these
languages are nonconflicting. □

In order to identify a subclass of admissible architectures,
we use the following definition.

Definition 4: A cycle of groups is a set G′ ⊆ G, let us say
{gk}K′ , with K ′ ⊆ K and 2 < |K ′| = m′ ≤ m, such that
there is Q = {1, . . . ,m′} and an isomorphism o : K ′ → Q
where: (i) for all k ∈ K ′, ĝo(k) = gk, and (ii) I ĝ1∩I ĝm′ ̸= ∅,
and (iii) for all 1 ≤ q < m′, we have that I ĝq ∩ I ĝq+1 ̸= ∅.
Denote by ΣG′

=
⋃

g∈G′ Σg . The cycle G′ is a minimal cycle
of groups if there is no subcycle G′′ ⊂ G′.
With this, we define four different basic architectures.

Fig. 2. Examples of linear (at the left) and star (at the right) architectures.

Definition 5: A group set G forms a single-group archi-
tecture if it only contains one group g, with Ig = I .

Definition 6: A set of groups G = {gk}K forms a linear
architecture if there exists an isomorphism o : K → K such
that: (i) for all k ∈ K, ĝo(k) = gk, and (ii) I ĝ1 ∩ I ĝm = ∅,
and (iii) for all 1 < q < m and for all q′ ∈ K, q′ ̸= q,
we have that I ĝq ∩ I ĝq′ ̸= ∅ if and only if q′ = q + 1 or
q′ = q − 1.

Definition 7: A set of groups G = {gk}K forms a star
architecture if there is g ∈ G where, for all g′, g′′ ∈ G\{g},
Ig ∩ Ig

′ ̸= ∅ and Ig
′ ∩ Ig

′′
= ∅.

Definition 8: A set of groups G = {gk}K forms a cyclic-
with-lookout architecture if G is a minimal cycle of groups,
as in Def. 4, and there is a lookout component i ∈ I such
that ΣG ⊆ Σi.

Indeed, as the main result of this section, we now show
that the three architectures from Def. 5-8 are admissible.

Proposition 1: For a system M that has either a single-
group, a linear, a star or a cyclic-with-lookout architecture,
Hyp. 1 is valid. □

Proof: For the single-group architecture, this is a trivial
extension of Proposition 1 in [4]. For the other architectures,
note that the following statements hold:

1. ∀i ∈ I . ∀g ∈ Gi: (i) Si is trim, (ii) ∀j ∈ Ig . PigSi =
PjgSj , and (iii) Si is unambiguous with respect to Σg .

To prove nonconflict, we have to prove that ∥i∈I Si ⊆
∥i∈I Si. Take any t ∈∥i∈I Si. Denote ti = Pit. Let us fix
an i ∈ I . Note that there is ui ∈ Σ∗

i such that tiui ∈ Si.
Then, because of 1.(ii), we have that, for all g ∈ Gi and
all j ∈ Ig , there is t̂j ûj ∈ Sj such that Pjg t̂j = Pigti,
and Pjgûj = Pigui. In addition, because of 1.(iii), and since
t̂j ûj ∈ Sj , there is uj such that tjuj ∈ Sj (see the details on

how to construct this uj using unambiguity from the proof
of Proposition 1 in [4]).

Now let us first finish the proof for the linear and star
architectures. For them, as a consequence of the definition
of groups, note the following also holds:

2. (i) ∀i ∈ I . ∀g1, g2 ∈ Gi: g1 ̸= g2 → Σg1 ∩ Σg1 = ∅,
and (ii) there is no cycle of groups.

From 2.(i) we know, for all j1 ∈ Ig1 and all j2 ∈ Ig2 , with
j1 ̸= j2, that tj1uj1 and tj2uj2 do not have any events in
common, i.e., do not synchronise, so P−1

j1
uj1 ∩P−1

j2
uj2 ̸= ∅.

Moreover, because of 2.(ii), we can inductively apply the
same arguments from the previous paragraph to obtain, for
all l ∈ I , a word ul such that tlul ∈ Sl (first, for all
components p ∈ I that are in the same group as j, then,
for all components q ∈ I that share a group with p, and so
on). Therefore, thanks to 2., we have that

⋂
i∈I P

−1
i ui ̸= ∅.

Take u from this intersection. Then, tu ∈ ∥i∈I Si.
Finally, let us finish the proof for the cyclic-with-lookout

architecture. Note that, in principle, when we have a cycle,
we cannot apply the same inductive arguments used above
to obtain u. That is because eventually we reach the same
component in the cycle, let us say k, coming from different
directions of induction. That is, following different sequences
of groups from component i to k during the induction, we
cannot guarantee there is uk such that

⋂
i∈I P

−1
i ui ̸= ∅.

However, in the presence of a lookout component, let us say
c, we can do it. The reason is that, from component i, we
can choose c as the first step of the induction (as c, being a
lookout, shares events with i). Then, uc serves as a template
that imposes a feasible sequence between all shared events in
the cycle, ΣG , guaranteeing that we can follow the induction
such that

⋂
i∈I P

−1
i ui ̸= ∅.

α β

γ γ

α, β β, γ α β

γ

α, β

α, γ
β, γ

MCO

A: B: C:

Fig. 3. Cyclic architectures without (A) and with lookout (B and C).

B. Connecting Admissible Architectures.

Definition 9: Let {Mu}U be a set of systems, where U
is a set of indexes. Assume that, for each u ∈ U , Mu is
either a single-group, a linear, a star or a cyclic-with-lookout
architecture. For different u, u′ ∈ U , consider the systems
may have common components, i.e.,Mu∩M′

u ̸= ∅. We then
say the system M =

⋃
u∈UMu has a mixed architecture.

Proposition 2: For a systemM with a mixed architecture,
Hyp. 1 is valid if there is no set G′ ⊆ G such that G′ is a
minimal cycle without lookout, i.e., if for all G′ ⊆ G, G′
being a minimal cycle implies that there is i ∈ ⋃

g∈G′ Ig

such that ΣG′ ⊆ Σi. Then M is also admissible. □
Proof: For this proof, we can use the same steps as

in the proof of Prop. 1, if we observe the assumption that
the connection between the systems Mu does not close any
new cycle, apart from already existing ones in plants Mu

that have a cyclic-with-lookout architecture.

ab ac

a

de df

d

Lookout Lookout

α, β α, γ

α

Lookout

Fig. 4. Examples of admissible mixed architectures.

C. Coordinators for Non-Admissible Architectures.

Unfortunately, there are very simple architectures for
which admissibility cannot be guaranteed.

Definition 10: A set of groups G = {gk}K forms a
cyclic-without-lookout architecture if G is a minimal cycle
of groups, as in Def. 4, but there is no lookout component,
i.e., there is no i ∈ I such that ΣG ⊆ Σi.
Fig. 5 shows an example of a system with a the cyclic-
without-lookout architecture from Fig. 3 (A) for which
Hyp. 1 is not valid.

a

αβ

b

βγ

c

γα

α, β, γ

M1: M2: M3: Cg1/g2/g3 :

Fig. 5. Example of system whose architecture requires a coordinator.

In order to still guarantee nonconflict via CBSS, a local
coordinator can be obtained in the following manner. We
can convert this architecture into a cyclic-with-lookout one,
which is admissible, by adding a component Mco in the plant
M, as follows. Define Mco as the single state automaton that
accepts and generates ΣG∗, such that it acts as a lookout
for the shared events in the cycle, i.e., ΣG . In this new
architecture (see Fig. 3, (C)) we can guarantee nonconflict, as
per Prop. 1, and Sco is then a coordinator for the components
in the cycle.

VIII. DECENTRALISED SUPERVISORY CONTROL

The goal of CBSS is to compute automata Si which
allow to extract supervisors fi which solve Problem 1. We
first discuss in Sec. VIII-A how cooperative supervisors can
be extracted from the output of CBSS, and then show in
Sec. VIII-B that these supervisors indeed solve Problem 1.

A. Extraction of Cooperative Supervisors

As any local closed loop Si in the output of CBSS
ultimately results from CSYNTH (Def. 1), we know that
local controllability of Si is respected in terms of Σp

i,uc.
Unfortunately, this does not imply that Si is controllable
with respect to Σs

i,cp. Thus, we cannot simply take fi as in
Sec. II-B, that is, such that Si ∼ fi. To illustrate that, let us
say that, in order to respect local controllability, we extract
a local supervisor fi : L(Mi) → Γi which only disables
locally controllable events in the set Σi,c, that is, for all
s ∈ L(Mi), define fi(s) = {σ ∈ Σi | sσ ∈ Si}∪Σs

i,cp ⊆ Σi.
In this case, the simple example depicted in Fig. 6 illustrates
why cooperation may fail: supervisor i expects cooperation
from other components in a group g to disable, at the state
0, the event θ ∈ Σs

i,cp; however, this is not expressed in the

contract Cg
i , because i needs θ to be enabled at state 1, while

states 0 and 1 correspond to the same state in the contract,
and therefore are indistinguishable to j.

Si : 0 1 2
a θ

θ
Cg

i :
{0,1} {2}

θ

Fig. 6. Cooperation might fail in the absence of cooperative messages.

To solve this problem, we follow [4] and consider the use
of a signalling bit for each σ ∈ ⋃

i∈I Σ
s
i,cp. A supervisor i

that does not control σ can request who controls it to disable
it on i’s behalf. The request is done by setting the bit relative
to σ to one, which is represented by dσ ∈ Σd

i→, as defined in
Sec. II-C. We model the requests made by i to other members
it shares a group with by a function di→ : L(Mi)→ 2Σ

d
i→ .

For all wi ∈ L(Mi) and all dσ ∈ Σd
i→, we interpret this

function such that dσ ∈ di→(wi) if and only if supervisor i
assigns one to the bit relative to σ ∈ Σs

i,cp after observing wi.
We assume this to be instantaneous. That is, we assume, for
all α ∈ Σi, that the output di→ = di→

(
wi

)
is immediately

updated to di→ = di→
(
wiα

)
with the occurrence of α.

We then define di→(wi) = {dσ |wiσ ̸∈ Si}. If multiple
supervisors share σ but do not control it, they all have access
to write on its signalling bit. In order to achieve joint control,
we assume the value of this bit is a logical or function of
the value each supervisor tries to assign to it. Therefore, for
each group g ∈ G, we define dg =

⋃
i∈Ig di→. Finally, the

set of requests read by i from the signalling bits – relative
to events controlled by i and shared with other supervisors
– is d→i = Σd

→i ∩
⋃

g∈Gi
dg . We then extract a supervisor

as follows, which allows us to state Lem. 2 below.
Definition 11: Let {S0

i }I be automata satisfying Cond. 1,
and ({Si}I) = NEGOTIATION({S0

i }I). If Si are nonempty
automata, we define each local supervisor fi : L(Mi) ×
2Σ

d
→i → Γi, with Γi ⊆ 2Σi , such that for all wi ∈ L(Mi)

and for all d→i ∈ 2Σ
d
→i , we have fi(wi, d→i) = {σ |wiσ ∈

Si and (σ ∈ Σs
i,c → dσ ̸∈ d→i)} ∪ Σs

i,cp.
Lemma 2: In the context of Def. 11, we have that

1) ∥i∈I Lm(fi/Mi) =∥i∈I Si and
2) ∥i∈I L(fi/Mi) =∥i∈I Si.

Proof: This proof is a generalisation from two to more
components of the proof of Lemma 2 in [4].

From this lemma, the next result immediately holds.
Corollary 2: The plant M = {Mi}I in closed loop with

the supervisors fi from Def. 11 is nonblocking, that is,
∥i∈I L(fi/Mi) = ∥i∈I Lm(fi/Mi), if and only if {Si}I are
nonconflicting, i.e., if and only if ∥i∈I Si is nonblocking. □

B. Solving Problem 1

By combining multiple previous results, we have the
following soundness result of Proc. 1, which shows that, if
found, the fully local supervisors extracted from the output
of CBSS indeed solve Problem 1.

Theorem 2: Consider a plant M that has an admissible
architecture. Let {Ki}I be the set of its plantified specifi-
cations, and ({Si}I) = CBSS({Ki}I). If there is no i ∈ I

such that Si is the empty automaton, let fi be the local
supervisors defined from Si via Def. 11. Then, it holds that

1) ∥i∈I Lm(fi/Mi) ∈ C(∥i∈I Ki), and
2) ∥i∈I L(fi/Mi) = ∥i∈I Lm(fi/Mi),

where controllability is taken with respect to L(∥i∈I Mi)
and

⋃
i∈I Σ

p
i,uc. □

Proof: Note the following two facts, so we can apply
previous results from this paper. Firstly, the output of CBSS
is also the output of its last call of NEGOTIATION. Secondly,
each Si outputted by CBSS satisfies Cond. 1, because: Ki

satisfies Cond. 1, Si outputted by NEGOTIATION also satis-
fies it (see Lem. 1), and by Remark 7 from [4], the output
of ENFORCERU also satisfies it. Thanks to ENFORCERU (
[4]), for all i ∈ I we have that Si outputted by CBSS is
unambiguous with respect to Σg

i , for all g ∈ Gi. Moreover,
Si is trim. Hence, by Prop. 1 and 2, we get that Si are
nonconflicting. This proves (2) by Cor. 2. Moreover, from
nonconflict, by Cor. 1 we get that ∥i∈I Si = supC(∥i∈I S̃i),
where S̃i is an automaton that satisfies Cond. 1 and such that
S̃i ⊆ Ki. Thus, we have that supC(∥i∈I S̃i) ⊆ supC(∥i∈I

Ki), so ∥i∈I Si ∈ C(∥i∈I Ki). Finally, we can apply Lem. 2,
which proves (1).

REFERENCES

[1] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
dr. frankenstein: Contract-based design for cyber-physical systems,”
European journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[2] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Hen-
zinger, and K. G. Larsen, “Contracts for system design,” Foundations
and Trends in Electronic Design Automation, vol. 12, no. 2-3, pp.
124–400, 2018.

[3] A. M. Mainhardt and A.-K. Schmuck, “Assume-guarantee synthesis
of decentralised supervisory control,” IFAC-PapersOnLine, vol. 55,
no. 28, pp. 165–172, 2022, 16th IFAC Workshop on Discrete Event
Systems WODES 2022.

[4] A. Mainhardt and A.-K. Schmuck, “Synthesis of decentralized supervi-
sory control via contract negotiation,” IEEE Transactions on Automatic
Control., 2025, (to appear), Preprint available here.

[5] R. Su and J. Thistle, “A distributed supervisor synthesis approach
based on weak bisimulation,” in 2006 8th International Workshop on
Discrete Event Systems, 2006, pp. 64–69.

[6] K. Cai and W. M. Wonham, Supervisor Localization, A Top-Down Ap-
proach to Distributed Control of Discrete-Event Systems, ser. Lecture
Notes in Control and Information Sciences. Springer, 2016.

[7] J. Komenda and T. Masopust, “Computation of controllable and
coobservable sublanguages in decentralized supervisory control via
communication,” Discrete Event Dynamic Systems, vol. 27, 12 2017.

[8] W. M. Wonham and K. Cai, Supervisory control of discrete-event
systems, ser. Communications and Control Engineering. Springer,
2019.

[9] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional
synthesis of maximally permissive supervisors using supervision
equivalence,” Discret. Event Dyn. Syst., vol. 17, no. 4, pp. 475–504,
2007.

[10] W. A. Apaza-Perez, C. Combastel, and A. Zolghadri, “On distributed
symbolic control of interconnected systems under persistency specifi-
cations,” International Journal of Applied Mathematics and Computer
Science, vol. 30, no. 4, 2020.

[11] R. Majumdar, K. Mallik, A. K. Schmuck, and D. Zufferey, “Assume-
guarantee distributed synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
3215–3226, 2020.

[12] B. Finkbeiner and N. Passing, “Compositional synthesis of modular
systems,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2021, pp. 303–319.

[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 3rd ed. Springer, 2021.

https://cloud.mpi-sws.org/index.php/s/bWTqqgf4mKS4YNb/download?path=%2F&files=MainhardtSchmuck.pdf

	Introduction
	Preliminaries
	Languages and Automata Basics
	Supervisory Control
	Cooperative Decentralised Supervisory Control

	Outline and Contribution
	Component Architectures
	Plants with Nonlocal Specifications

	Multicomponent CBSS
	Maximal Permissiveness of Negotiation
	Admissible Architectures for Nonconflict
	Admissible Architectures
	Connecting Admissible Architectures.
	Coordinators for Non-Admissible Architectures.

	Decentralised Supervisory Control
	Extraction of Cooperative Supervisors
	Solving Problem 1

	References

