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Synthesis of Distributed and Decentralised
Supervisory Control via Contract Negotiation

Ana Maria Mainhardt and Anne-Kathrin Schmuck

Abstract— We propose a method for the synthesis of lo-
cal decentralised supervisors for distributed discrete event
systems where subsystems may have different controllabil-
ity settings for their shared events, and where the privacy
of the behaviour in terms of the local nonshared events
plays a vital role. For simplicity, only two subsystems are
considered. Our approach is based on the negotiation of
contracts represented solely over shared events and de-
scribing an agreement between the subsystems, such that
they cooperate in disabling events in order to guarantee
their local specifications are satisfied. We establish further
conditions to ensure correct cooperation and global non-
blockingness, which are locally checked and, if necessary,
enforced. This way, privacy is respected during both the
synthesis and the execution of the supervisors, as the
dynamics of a subsystem are only partially observed by
the other through the events they actually share, without
the communication of exclusively local events or the use
of a coordinator for their supervisors. To protect privacy,
maximal permissiveness may be sacrificed; nevertheless,
we identify cases where this trait is preserved.

Index Terms— Automata, Discrete Event Systems, Pri-
vacy, Supervisory Control

I. INTRODUCTION

Assume-Guarantee (A/G) contracts are a well established
paradigm for dealing with large-scale distributed systems and
have a longstanding history and well established theoretical
foundations – see e.g. [1], [2]. Its main idea is to decouple
dependent distributed processes, or subsystems, by making use
of a set of compatible local contracts consisting of an assump-
tion and a guarantee. If the rest of the system fulfils a process’
assumption, this process must ensure its local guarantee holds,
which in turn implies that the corresponding assumptions
induced on the others also hold. The implications of this
methodology are very appealing from a practical perspective,
as they allow for (i) efficient design, i.e., local controllers
can be synthesised in a decentralised and concurrent fashion;
(ii) information privacy, meaning that, apart from what is
specified by the contracts, no detailed information about a
local behaviour is shared with the rest of the plant; and (iii)
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decoupled maintenance, as contract-compatible adaptations in
a component do not affect others.

Motivated by these desirable features, particularly privacy,
this paper presents an assume-guarantee synthesis framework
for the decentralised supervisory control of distributed discrete
event system. This requires the design of local supervisors
respecting compatible contracts, which model the common
behaviour of the supervised processes solely in terms of the
events they share, i.e, synchronise over. Each supervisor has
only partial observation of the events from the rest of the
system. Therefore, our framework must also identify and be
able to enforce local conditions that are sufficient to guarantee
cooperative control and nonblocking global behaviour of the
resulting closed-loop system. Due to page constraints, this
paper focuses on the specific but relevant case of two dis-
tributed processes, and leaves its intricate extension to multiple
processes for future work.

The method we propose here is inspired by the recent work
of [3] in the context of reactive synthesis, and is based on the
negotiation of contracts. The idea is the following. An initial
local supervisor is designed for each process by assuming
some cooperation from the rest of the plant, and then trans-
lated into contracts to be exchanged between the subsystems.
Iteratively, our procedure refines the local supervisors and
generates new contracts to be negotiated. Termination occurs
when compatible contracts and supervisors respecting these
contracts are achieved, and the aforementioned conditions are
locally guaranteed. Our framework results in local supervisors
correctly enforcing a global behaviour without a coordinator,
and without communicating exclusively local events during
both the synthesis and the execution of these supervisors.

A. Motivating Example

To illustrate our framework, consider the following example,
as depicted in Fig. 1, where we have two distinct manufac-
turing lines: (0) on top and (1) on bottom. Assume that each
line is from a different vendor, and has its own specifications;
the details of the dynamics of each line are irrelevant here for
our motivation. These lines are connected through buffers that
operate in a first in, first out manner, and that are used to send
pieces being processed in one line to the other one. The events
of putting and retrieving pieces of certain type from each of
these buffers are therefore shared events, and directly affect
the behaviour of both lines. However shared, each of them
may be controllable by only one of the lines. For example,
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Fig. 1. Illustrative example of two manufacturing lines, (0) on top, (1)
on bottom. Symbols Bi

k, Ri
k and Mi

k indicate, respectively, the k-th
buffer, robot and machine of line (i). Arrows represent the flow of pieces
in each line and between them, and ellipsis represent omitted parts of
the plant. The robots take the pieces from buffers to the machines to
be processed, and then to the next buffers. Details of the dynamics of
the lines are not important, just that they synchronise over the shared
events related to the buffers that send pieces from one line to the other.

line (0) can control the event of putting a workpiece in the
central buffer, while it cannot control the event of taking it
from the other side; vice-versa for line (1).

It is realistic to consider the scenario where each vendor
wishes to hide from the other the details of their own line’s
dynamics, that is, everything in their behaviour concerning
their local nonshared events, that is, their private events. The
idea of our approach is, then, to allow cooperation in disabling
shared events that are controllable by one, but not by the
other, and to design compatible contracts as well as local
supervisors that respect them. These contracts represent an
agreement between these vendors, but purely in terms of their
shared events – for example, specifying the capacity of such
buffers, or the order in which different types of workpieces
are sent through them – in a way that both lines satisfy their
local specifications and conflict is prevented.

B. Related Work and Contribution

Due to the decentralised nature of the resulting local su-
pervisors, our framework has to cope with similar challenges
as other decentralised, distributed, or modular supervisor syn-
thesis techniques. One of the main challenges is to ensure
nonconflict, an intrinsically global property stating that the
entire plant in closed loop with its decentralised controllers
can always reach desired, or marked, states. Some of these
approaches require this property to be verified over the com-
position of the controlled subsystems – e.g., [4], [5] – bringing
a computational cost that, in the worst case, is of the same
order as that of the monolithic approach [6]. There are works,
such as that of [7], in which such verification over the entire
model is not required; this is done by establishing sufficient
conditions for nonconflict over the local components, such
that the verification process also becomes decentralised. Either
way, if conflict is detected, it needs to be resolved somehow.
One way is by designing a coordinator, i.e., an additional
supervisor that coordinates the control actions of the local ones
– see [8]. Alternatively, if it is feasible to communicate the
occurrence of events which are a priori nonshared from one
supervisor to another – by the addition of sensors, for example
– then it is possible to determine a set of external events that

each local supervisor needs to observe to guarantee nonconflict
– e.g. [9]–[11], to cite a few.

Our method, on the other hand, guarantees nonconflict
by construction without a coordinator or communication of
exclusively local events, being a suitable solution when this
sort of communication is not desirable for security reasons, or
is not physically or financially viable. To ensure nonconflict,
we introduce here a new, targeted property called relative
unambiguity, inspired by existing conditions for decompos-
ability, such as relative observability from [12], and locally
nonblocking condition from [7]. In addition, we adopt the
cooperative controllability setting from [9], and the halfway
synthesis concept from [13] to obtain maximally permissive
local supervisors whenever the aforementioned property is im-
mediately satisfied, i.e., when it does not need to be enforced.

Our framework is closely related to other iterative A/G-
based synthesis approaches from the formal methods com-
munity, e.g. [3], [14], [15]. The particularity of our work in
this context is the use of synchronised deterministic finite
automata (DFA) over finite words as system models, compared
to input/output ω-automata over infinite words. This brings
interesting consequences. Firstly, to the best of our knowledge,
there does not yet exist a sound assume-guarantee framework
allowing ω-automata with arbitrary markings as contracts:
existing work only uses fully marked (safety) automata for
this purpose. Our method circumvents this problem, as the
synchronisation of DFA ensures that liveness requirements,
encoded by marked states in the involved automata, must
be enforced by all subsystems at the same time. Secondly,
synchronisation of automata leads to blocking situations in a
distributed setting – which requires special attention – while
interacting input/output ω-automata never block.

Note that this paper subsumes its conference predecessor
[16], extending the contributions in the following ways. The
results are presented and discussed in a more didactical and
thorough manner, and the proofs, which were omitted in the
aforementioned paper, are presented in full here. Moreover,
in Sec. V-C, we redefine the local property for nonconflict,
relative unambiguity, by relaxing it. This is possible by
allowing the supervisors to cooperate via signalling bits related
to the events they share, but that are controllable for one
and not for the other, if that is the case in the system; in
Sec. IV-E we discuss why these signalling bits differ from
the communication of private events. Finally, while in [16]
we assume that the events shared among the subsystems
composing a plant are controllable by at least one of them,
here we treat the more general case by assuming some of
these shared events are not controllable by any part of the
plant. This extension not only raises interesting discussions,
but it requires special attention and substantial changes in our
framework, leading to a new procedure for our Contract-Based
Supervisor Synthesis approach.

II. PRELIMINARIES

In this section, we briefly introduce the notation and defini-
tions relevant for this document. For a more didactic coverage
on supervisory control, see the textbooks [17] and [8].
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A. Languages and Automata Basics
Strings. Let Σ be a finite alphabet, i.e., set of symbols σ ∈ Σ
that represent the events of a DES. The Kleene-closure Σ∗

is the set of finite strings s = σ1σ2 · · ·σn, with n ∈ N and
σi ∈ Σ, including the empty string ϵ ∈ Σ∗, with ϵ ̸∈ Σ. If, for
two strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt,
we say r is a prefix of s, and write r ≤ s.
Sets. For any two sets A and B, denote by A×B and A\B,
respectively, their Cartesian product and set difference.
Languages. A language over Σ is a subset L ⊆ Σ∗. The prefix
of a language L ⊆ Σ∗ is defined by L := {r ∈ Σ∗ | ∃s ∈ L :
r ≤ s}. The prefix operator is also referred to as the prefix-
closure, and a language L is closed if L = L. A language K is
relatively closed with respect to L, or simply L-closed, if K =
K∩L. The prefix operator distributes over arbitrary unions of
languages. However, for the intersection of two languages L
and M , we have L ∩M ⊆ L ∩M . If equality holds, L and
M are said to be nonconflicting.
Projections. Given two alphabets Σ and Σi ⊆ Σ, the natural
projection Pi : Σ∗ → Σ∗

i is defined recursively by: (i)
Pi(ϵ) = ϵ, and (ii) for all σ ∈ Σ and s ∈ Σ∗, if σ ∈ Σi,
then Pi(sσ) = Pi(s)σ, otherwise Pi(sσ) = Pi(s). We define
the inverse projection P−1

i : Σ∗
i → 2Σ

∗
by P−1

i (si) = {s ∈
Σ∗ | Pi(s) = si} for all si ∈ Σ∗

i . These functions can be
extended from strings to languages, with Pi : 2Σ

∗ → 2Σ
∗
i

defined such that, for any L ⊆ Σ∗, Pi(L) = {si ∈ Σ∗
i | ∃s ∈

L : Pi(s) = si}. In turn, P−1
i : 2Σ

∗
i → 2Σ

∗
is given by

P−1
i (Li) = {s ∈ Σ∗ | Pi(s) ∈ Li} for any Li ⊆ Σ∗

i .
Automata. A deterministic finite automaton (automaton for
short) is a tuple Λ = (Q, Σ, δ, q0, Qm), with finite state set
Q, initial state q0 ∈ Q, marked states Qm ⊆ Q, and the
deterministic transition function δ : Q × Σ → Q, which can
also be viewed as a relation δ ⊆ Q × Σ × Q. This function
is partial if δ(q, σ) is not defined for all q ∈ Q and σ ∈ Σ;
otherwise, we say it is total. We identify δ with its extension
to the domain Q × Σ∗, or as a relation δ ⊆ Q × Σ∗ × Q.
Let δ(q, s)! indicate that δ is defined for q ∈ Q and s ∈ Σ∗;
for all q ∈ Q, we have δ(q, ϵ) = q; for s ∈ Σ∗ and σ ∈
Σ, we have δ(q, sσ)!, with δ(q, sσ) = δ(δ(q, s), σ)), if and
only if δ(q, s)! and δ(δ(q, s), σ))!. We say any (well-defined)
automaton Λ is nonempty, unless it is what is termed the empty
automaton ([17]), where Q = ∅ and q0 is not defined.
Reachability and Nonblockingness. A state q ∈ Q is
reachable if there exists s ∈ Σ∗ such that q = δ(q0, s), and
it is coreachable if there exists s ∈ Σ∗ such that δ(q, s) ∈
Qm. Non coreachable states are also referred to as blocking
states. If all reachable states in Λ are coreachable, then Λ
is nonblocking. Moreover, Λ is called reachable (respectively
coreachable) if all states are reachable (resp. coreachable),
and Λ is called trim if it is reachable and coreachable.
The reachable (resp. coreachable) subautomaton Re(Λ) (resp.
CoRe(Λ)) is obtained by eliminating all nonreachable (resp.
blocking) states from Λ and, accordingly, adapting the tran-
sition function δ in the obvious way. The trim subautomaton
Trim(Λ) is given by Re(CoRe(Λ)) = CoRe(Re(Λ)).
Semantics. For Λ = (Q, Σ, δ, q0, Qm), we associate the
generated language L(Λ) := { s ∈ Σ∗ | δ(q0, s)! } and the
marked language Lm(Λ) := { s ∈ Σ∗ | δ(q0, s) ∈ Qm } .

These two languages are the semantics of Λ, and Λ recognizes,
or accepts, the language Lm(Λ). Moreover, we say any two
automata Λ1 and Λ2 are equivalent if their semantics coincide,
i.e., we write Λ1 ≡ Λ2 if and only if L(Λ1) = L(Λ2) and
Lm(Λ1) = Lm(Λ2); if they are not equivalent, we write Λ1 ̸≡
Λ2. Note that Λ is nonblocking if and only if L(Λ) = Lm(Λ).
To simplify notation, we use boldface characters, e.g. Λ, to
denote an automaton, and the corresponding normal character,
e.g. Λ, for its marked language.
Product and Composition. The synchronous product of lan-
guages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2, where Σi, for i ∈ {1, 2},

are arbitrary alphabets, is defined as L1 ∥ L2 := P−1
1 (L1) ∩

P−1
2 (L2) over Σ1 ∪ Σ2. Given two automata Λi over Σi,

their synchronous composition Λ1 ∥ Λ2 is defined such that
L(Λ1 ∥ Λ2) = L(Λ1) ∥ L(Λ2) and Lm(Λ1 ∥ Λ2) = Λ1 ∥
Λ2. That is, only shared events σ ∈ Σs = Σ1 ∩ Σ2 require
synchronisation of the corresponding transitions.

B. Supervisory Control
Plant Model. A plant is a system to be supervised, and it is
modelled as an automaton M over Σ, which can be partitioned
as Σ = Σc∪̇Σuc, where Σc is the set of controllable events –
those that can be prevented from happening, or disabled – and
Σuc is the set of uncontrollable ones – that cannot be disabled.
Specification. A set of specifications for a plant M over the
alphabet Σ is modelled by trim automata Ek over ΣE,k ⊆ Σ,
where k is an index to represent each element in the set.
The purpose of a specification Ek is to model merely which
sequences of events in ΣE,k are allowed to occur in the closed-
loop behaviour, without taking into account the sequences that
are indeed possible in the free (open-loop) behaviour of M.
A plant can be composed with a set of specifications, and
the resulting automaton is then called its desired behaviour.
Here, we consider that each specification does not alter the
marking of the plant, that is, all the states in Ek are marked,
for all k in the set. It is useful to use a single automaton
to represent both the plant and its set of specifications, as
follows. Denote by E over Σ′ the composition of all the
specifications Ek in the set, with Σ′ ⊆ Σ being the union
of all the alphabets ΣE,k. Next, for E = (Q, Σ′, δ, q0, Q),
we define E′ = (Q ∪ {⊥}, Σ′, δ⊥, q0, Q) such that δ⊥ =
δ ∪

{
(x, σ,⊥) ∈ Q × Σ′ × {⊥} | δ(x, σ) is not defined

}
.

The automaton K = M ∥ E′ is a plantified specification for
M. We have that K is a blocking automaton whose semantics
are contained in the semantics of the plant, and whose marked
language is M -closed. Please note that specification and
plantified specification are not interchangeable terms.
Controllability. A language L over Σ is controllable with
respect to L(M) and Σuc if, for all σ ∈ Σuc, s ∈ L ∧ sσ ∈
L(M) ⇒ sσ ∈ L . Define the set C(L) := {L′ ⊆ L |L′ is
controllable w.r.t. L(M) and Σuc}, whether L is controllable
or not. This set is nonempty, since the empty language is
trivially controllable. As controllability is closed under union
of languages, it can be shown that the supremum element
of C(L), denoted supC(L), is given by

⋃
L′∈C(L) L

′ and is
controllable, i.e., belongs to C(L).
Supervisor. A supervisor for a plant M with alphabet Σ :=
Σc∪̇Σuc is a mapping f : L(M) → Γ, where Γ := {γ ⊆



GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 4

Σ |Σuc ⊆ γ} ⊆ 2Σ is the set of control patterns. Let us
denote by f/M the plant M under supervision of f . The
generated language of f/M is defined recursively such that
ϵ ∈ L(f/M) and, for all s ∈ Σ∗ and σ ∈ Σ, sσ ∈ L(f/M)
iff (i) s ∈ L(f/M), (ii) sσ ∈ L(M), and (iii) σ ∈ f(s).
This induces the marked language Lm(f/M) := L(f/M) ∩
M , which is controllable by definition. Note that L(f/M)
is closed and L(f/M) ⊆ L(M). We call f nonblocking if
L(f/M) = Lm(f/M). In this case, the closed loop can be
represented by a trim automaton S that accepts Lm(f/M);
we then say that S realises f/M and denote this by S ∼ f .
Supervisor Synthesis Problem. Given a plant M and a
plantified specification K over Σ := Σc∪̇Σuc, the control
problem is to design the maximally permissive supervisor f
that respects the specification – i.e., Lm(f/M) = supC(K),
with controllability taken with respect to L(M) and Σuc –
and that imposes a nonblocking closed-loop behaviour – i.e.,
L(f/M) = Lm(f/M).
Supervisor Computation. There exist many different algo-
rithms to solve the stated synthesis problem. In particular, it is
possible to compute a trim automaton S ∼ f by manipulating
a single automaton – namely, the plantified specification K
– instead of multiple automata – i.e., the plant M separately
from the (nonplantified) specifications. See [17] for details.
Hence, let us define the function SYNTH.

Definition 1: For an automaton S0 over an alphabet
Σ := Σc∪̇Σuc, we define the function SYNTH such that
SYNTH(S0) = S, where S is a trim automaton that accepts
the language supC(S0) with respect to L(S0) and Σuc. □

Remark 1: If K is a plantified specification for a plant M
over Σ := Σc∪̇Σuc, then supC(K) with respect to L(K) and
Σuc is equal to supC(K) with respect to L(M) and Σuc. □

III. CONTRACT-BASED SYNTHESIS PROBLEM

This section introduces the distributed and decentralised
supervisor synthesis problem tackled in this paper, and for-
malises the concept of assume-guarantee for this context.

A. Decentralised Supervisor Synthesis Problem Setting
We consider a plant composed of two processes, or sub-

systems, both modelled as automata Mi over alphabets Σi,
i ∈ {1, 2}. Along this paper, the terms global and local are
used to refer to the plant and its subsystems, respectively. Each
local alphabet is partitioned into Σi = Σp

i ∪̇Σs, where Σs is
the set of shared events – i.e., Σs = Σ1 ∩Σ2 – and Σp

i is the
set of private events of Mi, which are its local and exclusive
events, that is, Σp

i = Σi \ Σs. We assume that Σp
i and Σs

may contain controllable and uncontrollable events, meaning
Σp

i = Σp
i,c∪̇Σp

i,uc and Σs = Σs
c∪̇Σs

uc. We define the natural
projections Pis : Σ∗

i → Σs∗ and Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i .
To simplify notation throughout the document, we use the
convention that the indices i, j are understood from the context
such that i ̸= j for all i, j ∈ {1, 2}.

We do not require both processes to agree on the control-
lability status of shared events. From a global perspective of
the plant, we have that shared events controllable by at least
one subsystem are globally controllable, thus belonging to Σs

c.

That is, Σs
c = Σs

1,c ∪Σs
2,c, where Σs

i,c := Σi,c\Σp
i , and Σi,c is

the set of all events controllable by Mi. The subset of Σs
c that

is locally uncontrollable to i, thus controllable to j, we denote
by Σs

i,cp = Σs
c\Σs

i,c, where cp stands for cooperation. For the
cases where Σs

i,cp ̸= ∅ for some i – when the supervisors do
not agree on the controllability status of all the events they
share – and in order to allow cooperation and joint control
([18]), we define the set Σd

i = {dσ |σ ∈ Σs
i,cp}, where dσ

represents the request from supervisor i to j to disable a shared
event σ in Σs

i,cp. The shared events no subsystem can control
are globally uncontrollable, belonging to Σs

uc; in [16], we
considered this set as empty, i.e., we assumed that all shared
events are controllable by at least one subsystem.

Finally, we consider that each process is equipped with a
plantified specification Ki over Σi.

B. Contract-based Supervisor Synthesis.
Problem. For the problem setting given above, we

wish to find local supervisors fi : L(Mi) × 2Σ
d
j →

Γi such that the global closed-loop behaviour satis-
fies the local specifications and is nonblocking, that is,
Lm(f1/M1) ∥ Lm(f2/M2) ⊆ K1 ∥ K2 and L(f1/M1) ∥
L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2), where L(fi/Mi)
and Lm(fi/Mi) are defined from fi as in Sec. II-B.

Assume-Guarantee Contracts. The underlying idea of this
paper is to use contracts to represent a cooperative agreement
between decentralised components. Since each local process
can observe the other’s dynamics solely by the occurrence
of events they share, contracts are defined by automata over
such events and they represent both what one local supervisor
expects from and what it promises to the other controlled
process in terms of disabling those events. To formalise this,
let us initially model a contract for the subsystem Mi as a
tuple of automata (Ai,Gi) over the shared alphabet Σs.

The automaton Gi represents the guarantee the subsystem
i needs to provide for the rest of the plant. It is an additional
local specification, in the sense defined in Sec. II-B: it solely
informs which sequences of events – in this case, shared ones
– are allowed to occur in the local closed-loop behaviour,
disregarding which ones are actually generated by Mi.

The automaton Ai is the assumption. It models the closed-
loop behaviour of the rest of the plant as perceived by
subsystem i. Thus, the local supervisor fi does not enforce
over its subsystem the restrictions that are needed to satisfy its
local specifications but that are assumed to be already imposed
by the rest of the plant – since all controlled subsystems
synchronise over shared events in the global dynamics.

Due to the synchronisation over Σs, and in order to compute
each supervisor locally, for each subsystem i we need not
only its plantified specification Ki, but also a complementary
plantified specification concerning the rest of the plant from
the perspective of i. So, let us redefine the contract as a single
automaton Ci = Ai ∥ Gi, which then is the complementary
plantified specification we need – since Ai models the com-
plement of the controlled plant, and Gi the specification that
arises from this complement due to cooperation.

Contract Compliance. For the local specifications and
also the guarantee to be satisfied, the contracts should be
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obtained in such a way that a local supervisor does not assume
more restrictions are being imposed by the other closed-loop
subsystem than the latter actually guarantees. Therefore, their
contracts should be compatible, meaning L(Gj) ⊆ L(Ai) and
Gj ⊆ Ai. In addition, since we want to avoid overly restrictive
local supervisors, the guarantees should be as permissive as
possible, i.e., L(Gj) = L(Ai) and Gj = Ai. This implies that
the contract automata C1 and C2 should be equivalent. Our
goal is then to find automata Si that allow us to define the
desired supervisors fi, and that are compliant with equivalent
contracts. An automaton Si is compliant with a contract C
over Σs if Pis(L(Si)) = L(C) and Pis(Si) = C.

Outline. In Sec. IV, we introduce a procedure for contract
negotiation that computes automata Si compliant with equiva-
lent contracts Ci, while assuming cooperation and respecting
privacy. These automata may need to be further refined by aux-
iliary functions introduced and discussed in Sec. IV-D and V.
Finally, in Sec. VI, we present our Contract-Based Supervisor
Synthesis procedure, which combines contract negotiation with
the auxiliary functions in order to implement local supervisors
imposing a nonblocking global behaviour and satisfying the
local specifications. The proofs of all the results presented in
this paper can be found in Appendix I.

IV. CONTRACT NEGOTIATION

This section introduces a negotiation framework to compute
supervisors fi for each subsystem in a decentralised manner
and while respecting privacy. These supervisors are maximally
permissive if certain sufficient local conditions, which we
establish in the current and in the next section, are satisfied.
The negotiation is based on a local iterative refinement of
the plantified specification automata Ki. At each iteration
and for each subsystem, states and transitions are removed
from Ki to prevent blocking, ensure controllability, and to
satisfy the guarantees Gi for the other subsystem, while
relying on the latter to enforce the assumptions Ai. The
negotiation takes place in a way that avoids the plant to be
overly restricted. Thus, if the aforementioned conditions can be
guaranteed after the first fixed point of negotiation is found, the
resulting supervisors are maximally permissive. Otherwise, as
we discuss in this and the next sections, the global closed-loop
behaviour may still be blocking, which can be both tested and
fixed fully locally, even though this may cost the maximally
permissive trait in order to protect privacy.

A. Cooperative Supervisor Synthesis
Let us recall that, in the setting we consider here, the local

systems may not agree on the controllability status of their
shared events. Inspired by [9], the idea is that their local
supervisors cooperate in such a way as to assist each other
in disabling shared events that are uncontrollable for one, but
controllable for the other – otherwise, control actions designed
locally may over-restrict the behaviour of the plant.

To understand why cooperative local supervisor synthesis
is needed to preserve maximal permissiveness, note that,
for each subsystem Mi, its set of uncontrollable events is
Σp

i,uc∪̇Σs
i,cp∪̇Σs

uc. If we consider controllability with respect

to those events while computing SYNTH(Ki), states from
Ki where the only uncontrollable events being disabled are
precisely the ones the other system can control are eliminated,
since they disrespect the controllability property. However,
theses states would not be removed in the monolithic approach,
unless they were blocking or unreachable states; the reason is
that events controllable either by one or by the other subsystem
would be considered as controllable by the global plant. To
illustrate this, consider a trivial example where both subsys-
tems have exactly the same behaviour and already respect their
specification – that is, M1, M2, K1 and K2 all have the same
semantics. Both subsystems have full knowledge about each
other without further exchange of contracts, as all events are
shared and controllable by some subsystem. Even so, without
cooperation it may not be possible to locally design maximally
permissive supervisors, as depicted in Figure 2.

K1=K2 : 21
a
c

eb
d

f S1 :
a
c S2 :

b
d S1||S2 :

Fig. 2. Lack of cooperation may cause over-restrictive behaviour.
Consider that b, e ∈ Σs

1,c\Σs
2,c and a, f ∈ Σs

2,c\Σs
1,c; then, the

elimination of blocking states in K1,2, as depicted in gray colour, gen-
erates a controllability problem in different states for each subsystem,
which in turn have to be removed as well; thus, the languages supC(Ki)
– recognised by the automata Si – are conflicting. If cooperation was
assumed, states 1 and 2 would be preserved, and S1 ∥ S2 would be
equivalent to the automaton K1,2 apart from its blocking states in gray.

Formally, this cooperation requires to perform SYNTH of
Ki with respect to the uncontrollable event set Σp

i,uc∪̇Σs
uc,

instead of the actual locally uncontrollable event set Σi,uc =
Σp

i,uc∪̇Σs
i,cp∪̇Σs

uc. However, even so, we could still be im-
posing a more restricted behaviour than needed if the plant
alphabet contains shared events no one controls, namely, if Σs

uc

is not empty. The reason is that, in order to prevent blocking,
we may try to locally disable a transition by such an event
that is not even possible in the global behaviour of the plant;
this would needlessly cause the disabling of other transitions
to deter the first from happening, thus over-restricting the
behaviour of the plant, as depicted in Figure 3.

K1 :
α
β

γ
K2 :

α, γ
β K1 ∥ K2 :

α
β

Fig. 3. Consider these two plantified specifications Ki, with alphabets
Σi = Σs = {α, β, γ}. Note that if γ ∈ Σs

uc, the semantics
of SYNTH(K1) are empty if we compute it assuming α and β as
controllable, and γ as uncontrollable. However, since the sequence of
events αγ is not in L(K2), it is also not possible in the (nonblocking)
global behaviour L(K1 ∥ K2).

To avoid this kind of situation, we apply halfway synthesis
[13], postponing the decision of eliminating such transitions
to after the negotiation of contracts reaches a fixed point. For
that end, we state below the definition of the cooperative and
partial synthesis function – adapted from [13].

Definition 2: Take an automaton S0
i and a trim automaton

Λi = (Q, Σ, δ, q0, Qm) that accepts the language supC(S0
i )

with respect to S0
i and Σp

i,uc. Then the partial cooper-
ative synthesis function is defined as PCSYNTH(S0

i ) =
(Q ∪ {⊥}, Σ, δ

′, q0, Qm), where ⊥ /∈ Q, and δ′ = δ ∪
{(x, σ,⊥) | ∃s ∈ Σ∗

i : x = δ(q0, s), σ ∈ Σs
uc, sσ ∈

L(S0
i ) and δ(x, σ) is undefined}. □
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Note that PCSYNTH(S0
i ) is nonblocking apart from a single

blocking state, namely ⊥, reachable only by events in Σs
uc

from states that have these events enabled in S0
i .

Remark 2: If Ki is a plantified specification for the sub-
system Mi, and Si = PCSYNTH(Ki), then we have that
Si = supC(Ki) with respect to L(Mi) and Σp

i,uc. Moreover, if
we take controllability with respect to L(Mi) and Σp

i,uc∪Σs
uc,

then supC(Si) = supC(Ki). □

B. Contract Extraction

Consider the automaton Si := PCSYNTH(Ki). It implicitly
disables shared events that are not controllable in Mi but are
in Mj , presuming that the supervisor of the latter will assist
that of the former in disabling them. At the same time, Si

also disables locally controllable events to achieve its own
local specifications, ensure controllability with respect to Σp

i,uc

and local nonblockingness apart from the state ⊥ from Def. 2.
This, in turn, may also restrict the occurrence of shared events
in Sj due to the synchronisation in the global behaviour.

Motivated by the discussion in Sec. III-B, a natural choice
for the first draft of a contract automaton Ci – that is generated
by Mj to be used by Mi during the next round of negotiation
– is the observer automaton of Sj over Σs, defined as follows.

Definition 3 (Observer [17]): For an automaton Λ =
(Q, Σ, δ, q0, Qm), with Σ = Σs∪̇Σp, the unobservable reach
of a state q ∈ Q is defined as UR(q) = {q̂ ∈ Q | ∃w ∈ Σp∗ :
δ(q, w) = q̂}. It can be extended to sets X ⊆ Q by UR(X) =
∪x∈XUR(x). Analogously, we define the observable reach of
X by an event σ ∈ Σs as OR(X,σ) = {q ∈ Q | ∃x ∈ X :
δ(x, σ) = q}. The observer OΛ,Σs := (Qo, Σs, δo, qo0 , Q

o
m)

can then be constructed iteratively as follows, until no more
reachable states can be added to Qo.

1) Define the initial state as qo0 = UR(q0).
2) For any qo ∈ Qo and for any σ ∈ Σs, take q̂o =

UR
(
OR(qo, σ)

)
; if q̂o ̸= ∅, add q̂o to Qo, and define

δo(qo, σ) = q̂o.

Then Qo
m = {qo ∈ Qo | ∃q ∈ qo : q ∈ Qm}. □

The procedure to compute an observer and its properties
are described in [17]. By defining Ci := OSj ,Σs , the contract
generates and accepts the languages Pjs(L(Sj)) and Pjs(Sj).

C. Negotiation

Based on the foregoing discussion, we propose the fol-
lowing iterative procedure for the negotiation of contracts.
Initially, we compute S1

i := PCSYNTH(Ki) and extract the
first contract drafts C1

i . Next, we compute new supervisors
restricted to the latest drafts of contracts, namely, S1

i ∥ C1
i .

By taking this composition, we may remove some or even all
transitions to the blocking state ⊥ introduced by PCSYNTH;
however, this may also introduce new controllability or block-
ing problems. For this reason, we perform PCSYNTH again.
Inducing this argument for an arbitrary step k > 1, we have
that Sk

i := PCSYNTH(Sk−1
i ∥ Ck−1

i ), which generates a new
draft of contract given by Ck

i := OSk
j ,Σ

s .

Procedure 1 NEGOTIATION
Require: Automata S0

1 and S0
2

1: S1 ← PCSYNTH(S0
1) and S2 ← PCSYNTH(S0

2)
2: C1 ← OS2,Σs and C2 ← OS1,Σs

3: cond← True
4: while cond do
5: S′

1 ← S1 ∥ C1 and S′
2 ← S2 ∥ C2

6: if S1 ̸≡ S′
1 or S2 ̸≡ S′

2 then
7: for i ∈ {1, 2} do
8: if Si ̸≡ S′

i then
9: Si ← PCSYNTH(S′

i) and Cj ← OSi,Σs (j ̸= i)
10: else cond← False
11: return (S1, S2, C1, C2).

The entire procedure, called NEGOTIATION, is detailed in
Proc. 1. It iteratively refines Si and Ci until Sk

i ≡ Sk
i ∥ Ck

i ,
for some k ≥ 1, implying that no new controllability problem
with respect to Σp

i,uc or blockingness apart of ⊥ need to be
solved. Later on, in Sec. VI, we will use as inputs for this
procedure automata that are different from Ki. Therefore, to
be more precise, let us define the condition that any pair of
automata given as inputs for NEGOTIATION should satisfy in
order for the subsequent lemma to hold.

Condition 1: Consider a plant composed of two subsystems
Mi over Σi, as described in Sec. III-A. Then, for any pair of
automata Λi over Σi, we define the following requirements:

1) L(Λi) ⊆ L(Mi) and Λi ⊆ Mi;
2) (∀s ∈ Λi, ∀σ ∈ Σp

i,uc)
(
sσ /∈ Λi and sσ ∈ L(Mi)

)
→

sσ ∈ L(Λi);
3) (∀s ∈ Λi, ∀s′ ∈ Λj , ∀σ ∈ Σs

uc)
(
Pjs(s

′) = Pis(s), sσ ∈
L(Mi), s′σ ∈ L(Mj) and sσ /∈ Λi

)
→ sσ ∈ L(Λi) □.

Lemma 1: Let S0
i be any pair of automata that satisfies

Cond. 1, and Si be the outputs of Proc. 1 with S0
i as its inputs,

namely, (S1,S2,C1,C2) = NEGOTIATION(S0
1,S

0
2). Then the

pair Si also satisfies Cond. 1, and both automata are compliant
with the contracts Ci, which are equivalent. □

Remark 3: If Ki are plantified specification for the subsys-
tems Mi, then the pair (K1,K2) satisfies Cond. 1. □

Finally we have that this procedure is not overly restrictive,
as stated in the following theorem. The iterative refinements
of the inputs by NEGOTIATION do not remove any more states
and transitions than the necessary to obtain supC(S0

1 ∥ S0
2).

They may remove less, though, in which case we further
need to guarantee that the resulting composed system is
nonblocking, as we will discuss from this point on.

Theorem 1: In the context of Lem. 1, we have that
supC(S1 ∥ S2) = supC(S0

1 ∥ S0
2), where supC is taken with

respect to L(M1 ∥ M2) and Σp
1,uc ∪ Σp

2,uc ∪ Σs
uc. □

Corollary 1: Given the premisses of Lem. 1, if Si are trim
automata and S1 and S2 are nonconflicting, we have that S1 ∥
S2 = supC(S0

1 ∥ S0
2), where supC is taken with respect to

L(M1 ∥ M2) and Σp
1,uc ∪ Σp

2,uc ∪ Σs
uc. □

D. Treating the residual blocking state

Notice that, because of Def. 2, it is not always the case that
Si are trim – except if all shared events are controllable by
at least one subsystem, i.e., if Σs

uc is empty, as we considered
in [16]. If NEGOTIATION converges to a fixed point where a
blocking state ⊥ is preserved on at least one of the automata
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Si, we need to disable each one of the transitions by shared
uncontrollable events leading to a global blocking state caused
by a local ⊥. To help us tackle this problem and make it more
precise, consider the definition below.

Definition 4: Given the premisses of Lem. 1, and for Si =
(Qi,Σi, δi, qi0 , Qim) we denote by residuals of Si the set

Ri =
{
(si, σ) ∈ L(Si)× Σs

uc | δi(qi0 , siσ) = ⊥
}
.

Then, for each i and each residual r = (si, σ) ∈ Ri, we define
illegali(r) as the state x such that x = δi(qi0 , s

i), and the set
riskyj(r) =

{
y ∈ Qj | ∃sj ∈ Σ∗

j . δj(qj0 , s
j) = y, Pjs(s

j) =
Pis(s

i), and δj(y, σ)!
}

. □
The set Ri describes all the problematic local words that

lead to the state ⊥ left in Si by negotiation. The illegal of a
residual r ∈ Ri is a state that precedes ⊥ in Si. The risky set
contains all the states in Sj that synchronise – in the global
behaviour – with the corresponding illegal state in Si, and that
enable the shared uncontrollable event that leads to ⊥ in Si.

For each residual r ∈ Ri we need – and have the flexibility
– to choose whether to remove illegali(r) from Si, or all the
states in riskyj(r) from Sj . However, this decision affects the
permissiveness of the global controlled behaviour in a way that
is not obvious from a local perspective. Moreover, there are
cases where, no matter which choice is taken, the result is not
equivalent to the one obtained with the monolithic approach.

In Sec. VI we will see that the consequences of this decision
are hard to predict especially because NEGOTIATION and the
procedure that treats the residuals – called TREATRESIDUAL
and defined in the following – are embedded in a loop in our
synthesis framework – see Fig. 9 and Fig. 10. This framework
explores different choices, not only about where to get rid of
the residuals from negotiation, but also about other decisions
we will face in Sec. VI. In principle, our framework could try
all the described possibilities. However, to avoid combinatorial
explosion, we consider that all the residuals from both R1 and
R2 are treated in the same automaton Si, for a chosen i.

With that in mind, we define TREATRESIDUAL in Proc. 2. It
gets as inputs the automaton Si chosen to treat all the residuals
from both R1 and R2, and both contracts Ci outputted by
NEGOTIATION. As we point out in the remark below, these
contracts are useful to determine which states should be
removed. To this end, we use the synchronous composition
of C1 and C2 to get a single automaton C, since it is likely
that the contracts, although equivalent, are not represented by
the same automaton. From C, we can determine which states
should be removed to treat R1 and R2; that is, we can find
the state illegali(ri) for all the residuals ri in Ri (line 5), and
the states riskyi(rj) for all the residuals rj in Rj (line 7).

Remark 4: For all states q = (q1, q2) and q′ = (q′1, q
′
2)

in C with transition function δ, for all σ ∈ Σs
uc such that

δ(q, σ) = q′, and for all i, we have that ⊥ ∈ q′j iff there is
r ∈ Ri where illegali(r) ∈ qj and riskyj(r) ⊆ qi (note that
qi, q

′
i are states in the observer of Sj , and qj , q

′
j of Si). □

Note that TREATRESIDUAL will not return a trim automa-
ton; this procedure only solves the residuals, but leaves con-
trollability and possibly new blocking problems to be solved
by PCSYNTH in NEGOTIATION. Moreover, TREATRESIDUAL
may cause the loss of the fixed point properties of NEGOTIA-

Procedure 2 TREATRESIDUAL
Require: Automata Si, C1 and C2 where OSi,Σs = Cj ≡ Ci

Notation: Λ.δ and Λ.Q denote, respectively, the transition function and the
set of states for any automaton Λ

1: C← C1 ∥ C2 and S← Si

2: fix←
{(

(q1, q2), σ, (q′1, q
′
2)
)
∈ C.δ

∣∣∣ ⊥ ∈ q′1 ∪ q′2 and σ ∈ Σs
uc

}
3: aux← ∅
4: for

(
(q1, q2), σ, (q′1, q

′
2)
)
∈ fix do

5: if ⊥ ∈ q′j then
6: aux← aux ∪

{
(x, σ,⊥) ∈ S.δ | x ∈ qj

}
7: else
8: aux← aux ∪

{
(x, σ, x′) ∈ S.δ | x ∈ qj and x′ ∈ q′j

}
9: for (x, α, x′) ∈ aux do

10: if ⊥ ̸∈ S.Q then S.Q← S.Q ∪ {⊥}
11: prex ←

{
(p, α) ∈ S.Q× Σi | (p, α, x) ∈ S.δ

}
12: for (p, α) ∈ prex do
13: S.δ ←

(
S.δ\

{
(p, α, x)

})
∪
{
(p, α,⊥)

}
14: S.δ ← S.δ\

({
(x, α, x′)

}
∪
{
(x, σ, x′′) |σ ∈ Σi and x′′ ∈ S.Q

})
15: S.Q← S.Q\{x} and remove unreachable states from S

16: return S

TION – see Lem. 1 – so we would need to execute the latter
again, regardless. We discuss more about this in Sec. VI.

Remark 5: If a pair (S0
1,S

0
2) satisfies Cond. 1, and given

equivalent contracts Ci = OS0
j ,Σ

s , then (Si,S
0
j ) also satisfies

Cond. 1, for Si = TREATRESIDUAL(S0
i ,C1,C2). □

E. Extraction of Cooperative Supervisors
From this point on, until we start Sec. VI, let us assume

Si returned by NEGOTIATION are trim automata. As they are
computed assuming cooperation, by Def. 2 (PCSYNTH) and
by Rem. 2, we can guarantee that local controllability of Si

is respected in terms of Σp
i,uc∪Σs

uc, but not in terms of Σs
i,cp.

That is, as we allow the processes to have different control-
lability settings over certain shared events – namely, in Σs

i,cp

– even though events in Σs
c ⊃ Σs

i,cp are considered globally
controllable, they are not locally controllable. Therefore, even
if Si are trim, we cannot combine local control actions fi such
that Si ∼ fi, as in Sec. II-B.

To illustrate that, let us say that, in order to respect local
controllability, we extract a local supervisor fi : L(Mi) → Γi

which only disables locally controllable events in the set Σi,c,
that is, for all s ∈ L(Mi), define fi(s) = {σ ∈ Σi | sσ ∈
Si} ∪ Σs

i,cp ⊆ Σi. In this case, the simple example depicted
in Fig. 4 illustrates why cooperation may fail: supervisor i
expects cooperation from j to disable, at the state 0, the event
θ ∈ Σs

i,cp; however, this is not expressed in the contract,
because i needs θ to be enabled at state 1, while states 0 and
1 correspond to the same state in the contract, and therefore
are indistinguishable to j.

Si : 0 1 2
a θ

θ
Cj=Oi :

{0,1} {2}
θ

Fig. 4. Scenario where cooperation fails. The event a is local, while θ
is shared but locally uncontrollable for Si, while controllable for Sj ; the
transition with θ from state 0 needs to be disabled and fi cannot do this,
so cooperation is needed; however, since a transition by the same event
is enabled in state 1, it is not possible to represent that disablement in
the observer of Si, i.e., in contract Cj .

To solve this problem, we propose that the supervisors
cooperate in achieving joint control ([18]) by the use of a
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signalling bit for each shared event σ in Σs
i,cp. The idea is that

supervisor i, which does not control σ, sets the corresponding
bit to one as a request for supervisor j, which controls σ,
to disable this event on i’s behalf. The value of these bits
related to Σs

i,cp are written only by supervisor i, but can
be read by supervisor j. We describe their behaviour by a
function di : L(Mi) → 2Σ

d
i , where dσ ∈ Σd

i , as defined
in Sec. III-A, represents a request to disable σ. For all
wi ∈ L(Mi) and all dσ ∈ Σd

i , we interpret this function
such that dσ ∈ di(wi) if and only if supervisor i assigns
one to the bit relative to σ ∈ Σs

i,cp after observing wi. We
then define di(wi) := {dσ |wiσ ̸∈ Si}. We assume that the
signalling bits are instantaneously updated by supervisor i with
the occurrence of a local event. That is, we assume, for all
α ∈ Σi, that the output di = di

(
wi

)
is immediately updated to

di = di
(
wiα

)
with the occurrence of α. This allows supervisor

i to inform j its control decision with respect to the shared
events in Σs

i,cp. We then extract supervisors as follows, which
allows us to state Lem. 2 below.

Definition 5: Given the premisses of Lem. 1, and if Si are
nonempty trim automata, we define each local supervisor fi :
L(Mi) × 2Σ

d
j → Γi, with Γi ⊆ 2Σi , such that for all wi ∈

L(Mi) and for all dj ∈ 2Σ
d
j , we have fi(wi, dj) = {σ |wiσ ∈

Si and (σ ∈ Σs
j,cp → dσ ̸∈ dj)} ∪ Σs

i,cp.
Lemma 2: In the context of Def. 5, we have that
1) Lm(f1/M1) ∥ Lm(f2/M2) = S1 ∥ S2 and
2) L(f1/M1) ∥ L(f2/M2) = S1 ∥ S2. □
From this lemma, the next result immediately holds.
Corollary 2: The global behaviour of the plant in closed

loop with the supervisors fi from Def. 5 is nonblocking, i.e.,
L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

if and only if S1 and S2 are nonconflicting. □
Remark 6: Related to the requests to disable events in Σs

i,cp

through the use of signalling bits, as described above, we
highlight the following points. First, note that if supervisors
agree on the controllability status of shared events – which is
typically assumed in the literature – then Σs

i,cp = ∅ for all i,
and no signalling bit, nor the function di, are needed. Second,
when that is not the case, then this sort of communication
is necessary only for the implementation of the supervisor
functions fi, and not for the synthesis of Si – as opposed to the
exchange of contracts during NEGOTIATION. The signalling
bits represented by the function di simply guarantee that the
supervisor j will enforce, with respect to Σs

i,cp, the joint
control action obtained from S1 and S2.

Third, what we propose here is different from communi-
cating private events, as e.g. in [10], where a subset of the
exclusively local (private) events needs to be observed by
other supervisors – i.e., every occurrence of such events is
communicated. Here, a request dσ just informs a supervisor j
that a shared event σ controlled only by j needs to be disabled,
even when the contract says otherwise. While indirectly this
might mean some private event occurred in subsystem i,
supervisor j is not informed which one it was, let alone its
every occurrence. Supervisor j is also not informed about
how many private events occurred in i before the value of
the signalling bits changed, i.e., j observes the output of the

function di, but not its input. Moreover, in principle supervisor
j cannot even infer this information, as our approach does
not share the local model of each subsystem – apart from
the contract that is only described in terms of the shared
events – neither during the synthesis nor the execution of the
supervisors. Finally, even if Σs

i,cp ̸= ∅, we can still avoid the
signalling bits and the function di by using the definition of
relative unambiguity from [16], instead of redefining it as a
weaker property in Def. 7 – see Rem. 8. □

V. ASSURING NONCONFLICTING LOCAL SUPERVISORS

Assume in this section again that the supervisor automata
Si resulting from negotiation are trim; in the next section,
we will treat the general case. This section shows how these
local supervisors, although locally nonblocking, may have to
be further restricted to ensure a nonblocking behaviour of the
resulting global closed-loop system. As we aim at computing
necessary restrictions fully locally to preserve privacy, we
might need to sacrifice maximal permissiveness.

A. Local Property for Nonconflict: A Motivation
Consider the example in Fig. 5, where S1 and S2 are trim

automata with shared alphabet Σs = {α, β, θ}; assume con-
trollability (with cooperation) is not being disrespected. They
satisfy the fixed point property for NEGOTIATION; however,
their composed behaviour is blocking.

S1 :

α γ β

α

β, θ

α

S2 :

α λ θ

α

β, θ

α

S1||S2 :

α
γ

λ

λ

γ

β

θ β, θ

α

Fig. 5. Conflicting supervisors computed by Proc. 1.

To understand the reason behind this conflict, note that the
strings α and αλ in S2 look the same to S1, as P2s(α) =
P2s(αλ) = α. This conceals the fact that β can occur in S2

after α, but not after αλ. Analogously, α and αγ look the
same to S2, hiding the fact that θ can occur in S1 after α,
but not after αγ. Thus, strings like αγλ or αλγ can occur in
S1 ∥ S2 and lead to blocking states.

B. The Unambiguity Property
Consider the global behaviour of the plant whose subsys-

tems are in closed loop with their respective local supervisor,
where these supervisors were obtained from negotiation, i.e.,
are compliant with equivalent contracts. To ensure nonconflict,
or global nonblockingness, in this system – preventing situ-
ations as the one just described in the last subsection – it is
sufficient to guarantee that each controlled subsystem satisfies
the following property, here named unambiguity.

Definition 6: The language Si is unambiguous with respect
to Σs and the natural projection Pis : Σ∗

i → Σs∗ if, for any
s, s′ ∈ Si such that Pis(s) = Pis(s

′),
1) (∀σ ∈ Σs) sσ ∈ Si ⇒ (∃s′′ ∈ Σ∗

i )
s′ ≤ s′′, Pis(s

′′) = Pis(s
′) and s′′σ ∈ Si; and

2) s ∈ Si ⇒ (∃s′′ ∈ Σ∗
i )

s′′ ≤ s′or s′ < s′′, Pis(s
′′) = Pis(s

′) and s′′ ∈ Si. □
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The reasons for the name are the following. A string ss
over the shared alphabet Σs can be the projection of different
strings over a local alphabet Σi; some may allow a shared
event σ to eventually happen, possibly after a suffix string of
nonshared events, while others may not; thus, this ambiguity
of ss makes it possible for conflict to happen – e.g., consider as
ss the projection α in the example from Fig. 5. This scenario
is prevented by the condition in Def. 6.1, which also appears
in [7], where it is called locally nonblocking condition.

Now, assume each automaton Si satisfies Def. 6.1, but
not Def. 6.2; then, their marking is ambiguous and, although
all marked states of each automaton can be reached in the
composed behaviour, conflict may still arise if for some path
they are never reached simultaneously in both automata.

To better explain this notion, let us take a look at the Fig. 6,
where Si are trim automata, Σs = {α, β}, and Oi = OSi,Σs .
Assume local controllability is not being disrespected. Let us
consider two different markings. In the first one, indicated by
the colours black and red, only the states 3 and 5 are marked
in S1, the states {1, 2, 5} and {3, 4} in O1, the states 2 and
4 in S2, and the states {1, 4} and {2, 3} in O2. The second
marking is shown by the colours black and blue, so the only
marked states in S1 are 2 and 5, in O1 the state {1, 2, 5}, in
S2, the states 1 and 4, and in O2, the state {1, 4}.

The supervisors from Fig. 6 satisfy, in both marking scenar-
ios, the fixed point property for NEGOTIATION; moreover, the
condition from Def. 6.1 is also satisfied. For the first marking,
though, the condition from Def. 6.2 is not. The reason is that
from the perspective of one subsystem, the only marking that
can be observed from the other one is through its observer.
Then, for instance, we have that the sequence α is in the
marked language of the observer, while S1 could be in the
state 1 or 2, and neither is marked; moreover, if a β is observed
after α, S1 could be in the state 3 or 4, and again it is not
possible to know just by looking at O1 whether a marked
state was actually reached in S1. This leads to conflict in this
example simply because, in the composed behaviour S1 ∥ S2,
it is possible to reach states from which the local markings
never synchronise. Indeed, in the global behaviour, S2 may
get locked in the loop between the states 3 and 4, while S1 is
locked in the cycle with its states 1, 2 and 3, which indicates
that Si are conflicting. Now consider the example with the
second marking. Then, note that there is no conflict and that
unambiguity is satisfied – e.g., states 1, 2 and 5 from S1

correspond to the same state in O1, and although 1 is the
only one not marked, it can reach 2 by local event b.1

Based on the intuition from the foregoing discussion, we
state the following result.

Proposition 1: For automata S1 and S2 as in Lem. 1, if
they are trim, and if their marked languages S1 and S2 are
unambiguous with respect to Σs and the natural projection
Pis : Σ

∗
i → Σs∗, then these languages are nonconflicting. □

1It is worth mentioning that, although unambiguity might look similar to
properties used in hierarchical control to guarantee global nonblockingness,
they are not quite the same, as different control architectures and synthesis
methods require different conditions to be satisfied. So, for example, although
Def. 6.1 is equivalent to locally nonblocking condition from [7], we have that
Def. 6.2 is not equivalent to marked string acceptance from [7] – indeed, for
the second marking in Fig. 6, the former is satisfied while the latter is not.

S1 :

0

1 2 3

4 5

α
b β

β

α

a

α
β

S2 :

0

1 2

3 4

α β
α

c

α
β

O1 :

{0,4} {1,2,5} {3,4}
α

β
α

O2 :

{0,3} {1,4} {2,3}
α

β
α

Fig. 6. Example of supervisors computed by Proc. 1. For the first mark-
ing considered, they are conflicting, and each Si disrespects Def. 6.2.
For the second marking they satisfy Def. 6 and are not conflicting.

C. Locally Enforcing Unambiguity
Note that unambiguity is not retained under union of lan-

guages and therefore a supremal unambiguous sublanguage of
Si may not exist. Since we do not want to just check whether
each subsystem satisfies this property, but rather enforce it over
the languages Si, we need a stronger version of it that is closed
under union, so we can obtain a supremal sublanguage of Si

that satisfies a sufficient condition for nonconflict. Inspired by
the concept of relative observability from [12], we introduce
relative unambiguity, where a language Si is given, relative to
which we test whether a sublanguage S′

i ⊆ Si is unambiguous.
Definition 7: The language S′

i ⊆ Si is relatively unam-
biguous2 with respect to Si and the alphabet Σs if, for any
s, s′ ∈ Si such that Pis(s) = Pis(s

′),
1) (∀σ ∈ Σs) sσ ∈ S′

i ⇒ (∃s′′ ∈ Σ∗
i ) s

′ ≤ s′′ and
Pis(s

′′) = Pis(s
′) and s′′σ ∈ S′

i;
2) s ∈ S′

i ⇒ (∃s′′ ∈ Σ∗
i ) (s

′′ ≤ s′ or s′ < s′′) and
Pis(s

′′) = Pis(s
′), and s′′ ∈ S′

i. □

Procedure 3 ENFORCERU(Λ0,Σs)

Require: Automaton Λ0 over Σi, subalphabet Σs

Notation: Λ.δ, Λ.Q and Λ.Qm denote, respectively, the transition function,
the set of states and the set of marked states for any automaton Λ

1: Λ← Λ0 and compute O← OΛ,Σs

2: if ∃q, q′ ∈ O.Q, with q ̸= q′, such that q ∩ q′ ̸= ∅ then
3: Λ← Λ ||O and recompute O← OΛ,Σs

4: MO ← ∅ and changed← False
5: for all q ∈ O.Qm do
6: qm ← {x ∈ q | x ∈ Λ.Qm} and qm? ← q\qm
7: if AMBIGMARKING(Λ, qm?, qm) then MO ←MO ∪ {q}
8: if MO ̸= ∅ then changed← True and O.Qm←O.Qm\MO

9: repeat
10: O←TRIM(O) and Λ←Λ ∥ O and RO ← ∅
11: for all q ∈ O.Q do
12: for all σ ∈ Σs such that O.δ(q, σ)! do
13: qσ ← {x ∈ q |Λ.δ(x, σ)!} and qσ? ← q\qσ
14: if AMBIGPATH(Λ, qσ?, qσ) then
15: RO ← RO ∪

{(
q, σ,O.δ(q, σ)

)}
16: if RO ̸= ∅ then changed← True and O.δ ← O.δ\RO

17: until RO = ∅
18: return Λ and changed

In order to enforce relative unambiguity – hence, also un-
ambiguity – we define the function ENFORCERU, in Proc. 3,
which manipulates a given automaton Λ0 into an automaton
Λ such that Λ is the supremal relatively unambiguous sublan-
guage of Λ0, denoted by Λ = supRU(Λ0).

To start explaining Proc. 3, first consider an automaton Λ
and a natural projection P : Σ∗ → Σs∗. Let us define the

2Def. 7 differs from the property under the same name in [16], see Rem. 8.
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ΛI :

0

1

2

3

4

5

678

α

γ

γ

α

αγ

γα
βλα

OI : 0,2,7 1,3,8 5,6 3,4α β
α
β

ΛII :

0

1

2

3 4

5

6

789

α

γ

γ

α
β

α

γ

γ

α
βλα

OII : 0,2,8 1,3,9 4,6 5,7α β
α
β

ΛIII :

0

1

2

389

α

γ

γ

α
λα

OIII : 0,2,8 1,3,9α

Fig. 7. Illustrative example for Proc. 3 showing automata Λ over Σi (top) and O = OΛ,Σs (bottom), where Σi = {α, β, γ, λ}, and Σs = {α, β}
(transitions by shared and private events represented by solid and dashed arrows, respectively). ΛI does not satisfy Cond. 2 – state 3 appears in
more than one state of OI . Then ΛII shows OI ∥ ΛI , where Cond. 2 holds. ΛIII shows ENFORCERU(ΛII ,Σs) = ENFORCERU(ΛI ,Σs).

uncertainty set of states that a string s in L(Λ) can reach by
U(s) :=

{
δ(q0, s

′) | ∃s′ ∈ L(Λ) : P (s′) = P (s)
}
⊆ Q [12].

Now, take as Λ the example in Fig. 8, where only the event a is
not in the shared alphabet Σs. The automaton Λ is ambiguous,
as the strings λζ and aλζ look the same under the projection
P , but the former can be followed by θ, while the latter cannot.
To obtain the automaton that accepts supRU(Λ), the event θ
must be removed after the string λζ. However, if we do that
in Λ, the event θ would be unnecessarily removed after the
string γα – and then would have to be removed after aγα as
well, overly restricting the behaviour. In order to obtain the
supremal sublanguage, we need to adopt for the automaton at
hand the same condition as used in [12], [19].

Condition 2:
(
∀s, t ∈ L(Λ)

)
δ(q0, s) = δ(q0, t) ⇒ U(s) =

U(t). □
If this is not satisfied by Λ, as in our example, it can be
imposed with no loss of generality by replacing Λ with
OΛ,Σs ∥ Λ – see [19] for the proof. We guarantee Cond. 2
holds in the if-statement starting in line 2 of Proc. 3.

Λ : λ ζ

γ α
θa

λ
ζ

γ
αθ

Fig. 8. Example illustrating why Cond. 2 is needed.

The observer OΛ,Σs is not only used for used for Cond. 2,
but also informs which states in Λ are reached from the
initial state by strings with the same projection over the shared
alphabet, which is needed to check relative unambiguity. The
first condition that is enforced is the one from Def. 7.2. In the
loop starting in line 5 of Proc. 3, we check each marked state
q in OΛ,Σs . If q contains a nonmarked state from Λ that does
not satisfy that condition, q and all the states it contains are
respectively unmarked in OΛ,Σs and, through the synchronous
product, in Λ (on lines 8 and 10). For such check over the
states of q, we call AMBIGMARKING. This function performs
back- and forward searches to detect if there is, for each state
in the set qm? (defined on line 6), a sequence of nonshared
events that connects this state to any state in the set qm (also
defined on line 6), either from the former to the latter, or the
other way round; if and only if there is no such sequence, the
function returns true, i.e., the condition is not satisfied.

To check if the condition from Def. 7.1 holds, in the loop
starting in line 11 we inspect each state q in OΛ,Σs , which is
a set of states in Λ. If a shared event σ is enabled from q,
there is at least one state in q from which a transition with
σ is defined in Λ. We can thus partition q into a set qσ of
states in Λ from which σ is enabled, and a set qσ? with the
remaining states. Then Def. 7.1 is not disrespected if from

every state in qσ? it is possible to reach (by a sequence of
nonshared events) some state in qσ; this is checked by the
function AMBIGPATH through a backward search from states
in qσ – the function returns true if and only if such reach is
not possible. If Def. 7.1 is disrespected, the transitions with
σ from q and from the states in qσ need to be removed from
OΛ,Σs and Λ, respectively, which is done in lines 16 and 10.

As an illustrative example for this procedure, see Fig. 7. It is
worth to notice that an automaton resulting from this procedure
may not be trim, for we only eliminate from Λ transitions
by shared events – that disrespect relative unambiguity – by
taking its composition with OΛ,Σs . There are two reasons for
that. Firstly, transitions by local events can only be removed
if we take into account the controllability issues it may bring;
thus, this trimming problem is left for the NEGOTIATION
function. Secondly, although it is correct to remove states from
the observer to enforce the property in question, we cannot
remove states from Λ contained in a state of OΛ,Σs that
survived the trimming; such states are needed to remember the
original sequences generated by Λ0 – that form the language
denoted by Si in Def. 7 – in order to compare them to the
sequences generated by the iteratively refined automaton Λ –
that form the language denoted by S′

i in Def. 7.
Remark 7: Given a pair (S0

1,S
0
2) that satisfies Cond. 1, if

Si is the output of ENFORCERU(S0
i ,Σ

s) for some i ∈ {1, 2},
then, for i ̸= j, the pair (Si,S

0
j ) also satisfies Cond. 1. □

Remark 8: Please note that the concept of relative unambi-
guity from Def. 7 differs from the one in [16], as the former
requires one less clause than the latter: namely, Def. 7. 3 from
[16], which is a relative-observability-like clause with respect
to Σs

i,cp. This clause is obsolete in the present paper because,
in order to enable cooperation, the supervisor functions fi
from Def. 5 use signalling bits regarding events in Σs

i,cp.
We consider these bits instead of Def. 7. 3 for the following
reasons. Firstly, because this introduces an alternative solution.
Note that the one from [16] is also applicable here, despite
that we might have Σs

uc ̸= ∅, while [16] assumes Σs
uc = ∅.

This is true because: (i) Def. 7. 3 from [16] depends only
on Σs

i,cp, and we have that Σs
i,cp ∩ Σs

uc = ∅; (ii) if Si are
trim, by definition of PCSYNTH, then local controllability of
Si is already respected in terms of Σp

i,uc ∪Σs
uc – although not

necessarily in terms of Σs
i,cp, reason why either Def. 7. 3 from

[16] or the communication proposed here is required.
Secondly, using signalling bits is simpler than enforcing

Def. 7. 3 in [16], yet it still retains privacy with respect to
Σp

i , as discussed in Rem. 6. Lastly and most importantly, the
use of signalling bits allows for more permissive solutions
than if we instead enforce Def. 7 from [16], as this property
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is stronger than Def. 7 here. □

VI. CONTRACT-BASED SUPERVISOR SYNTHESIS

Our intention in this paper is to compute local supervisors
fi ensuring a nonblocking global closed-loop behaviour that
satisfies all given specifications, while respecting the privacy
of each subsystem, both during the synthesis of these super-
visors, as well as during their execution. With that in mind,
we have introduced Proc. 1 in Sec. IV for the negotiation of
contracts, which assumes cooperation between the supervisors,
and computes automata Si that are used to defined these
supervisors according to Def. 5. We also have seen that
these automata may need further refinements to guarantee
global nonblockingness, and for that we defined the auxiliary
functions TREATRESIDUAL and ENFORCERU, in Proc. 2 and
3. Now, we will show how to combine all these procedures in
order to fulfil our goal.

Consider the case where some of the outputs of NEGOTI-
ATION are not trim automata. In this case, in principle both
the auxiliary functions need to be performed – the first one
to indirectly disable transitions that lead to the blocking state
⊥ added by PCSYNTH in negotiation, and the other one to
check and, if needed, to enforce the property from Def. 7.
However, the order in which they are executed affects the
resulting supervisor automata Si and their permissiveness.

Moreover, the function TREATRESIDUAL may remove some
transitions that disrespect relative unambiguity, but may also
cause new ambiguities. Vice versa, if this property needs to be
enforced, ENFORCERU may solve some of the current block-
ing problems left by negotiation, but also introduce new ones.
In addition, both functions may cause the loss of the fixed
point properties of negotiation – see Lem. 1 – including the
compliance with their contracts; so, after calling either of the
auxiliary functions, we also need to perform NEGOTIATION
again. With these observations we conclude that, after one
of the auxiliary functions is performed, both NEGOTIATION
and the other auxiliary function need to be called. Again, the
question is in which order. As stated in Thm. 1, negotiation is
not overly restrictive, while both auxiliary functions can be.
Therefore, we give priority to negotiation, that is, we execute
NEGOTIATION right after ENFORCERU, if the latter actually
enforces the property, or right after TREATRESIDUAL.

Based on the arguments above, we fix an order in which
our procedures can be executed and schematically represent it
in Fig. 9. Two more remarks are worth adding about this.

While TREATRESIDUAL always modifies its input – i.e.,
its output is always different from its input – this is not
always true for ENFORCERU. That is why we need to check
the boolean ci expressing whether the output changed with
respect to the input Si. When the input already satisfies the
property, it does not need to be enforced, and ci is false; if ci
is false for both i, we loop back to either NEGOTIATION or
TREATRESIDUAL, depending whether Si are trim or not.

Finally, observe that the condition that checks whether ⊥ is
a state in some Si will never be true if Σs

uc is empty – because
then, by the definition of PCSYNTH, the automata Si would
be trim. In this case, the scheme in Fig. 9 would be reduced

(∀i) S′
i=Ki (S1,S2,C1,C2) = Negotiation(S′

1,S
′
2)

(∃i) ⊥ ∈ Si.Q

(∀i) (S′
i, ci)=EnforceRU(Si,Σ

s)

∧

i∈{1,2}
¬ci

Choose i ∈ {1, 2}, then
S′
i = TreatResidual(Si,C1,C2),

and S′
j = Sj , for j = 3− i

Treat
residuals

first

(∀i) (S′
i, ci) = EnforceRU(Si,Σ

s)

∧

i∈{1,2}
¬ci

Fixed point (S1,S2)

True

False

True

True

False

False False

True

Fig. 9. Scheme for the synthesis of the automata Si.

to a loop with only NEGOTIATION and ENFORCERU– see
[16] – as we would not have the decisions shown as dashed
blocks in the figure. However, though the emptiness of Σs

uc is
a sufficient condition for this to happen, it is not necessary.

A. Exploratory Procedure for Synthesis
From the foregoing discussion, we see in Fig. 9 that, in

general, we are left with two decisions. The first is to select
one of the auxiliary functions to be called after negotiation – if
some of its outputs is not trim – and the second is about where
to prevent ⊥ to be reached when we call TREATRESIDUAL,
as discussed in Sec. IV-D.

The dilemma, mentioned in the beginning of this section,
is that we cannot know beforehand which choice leads to the
more permissive solution – although all the options lead to
correct results, as we will prove later in this section. So it is not
obvious how to extract a rule for each decision, as it depends
on each particular plant model. Even if we could compute
the resulting pair of automata Si for all possible combinations
of choices, it would not be possible to guarantee that one of
them enforces the language supC(K1 ∥ K2). In fact, different
sequences of choices may lead to incomparable solutions; that
is, we may not even be able to compare these pairs in terms
of maximal permissiveness.

Therefore, what we propose here is an exploratory proce-
dure, based on the scheme in Fig. 9, that tries the combinations
of decisions until we find nonempty automata that can realise,
via Def. 5, the desired local supervisors. This procedure, given
in Proc. 4, is denoted by CBSS, as an initialism for Contract-
Based Supervisor Synthesis.

We cannot guarantee maximal permissiveness, but we also
do not wish for trivial solutions for our synthesis problem; be-
sides, we do not want to explore all possibilities mentioned so
far, because even if we do so, we might not be able to compare
these solutions. Thus, as it is often done in Supervisory Control
Theory – e.g., in [17] – it is natural to have a specification of
a minimal behaviour, which can be given as a trim automaton
Li. Just as each plantified specification Ki is an upper bound
for the controlled behaviour of the corresponding subsystem,
in the sense that Si ⊆ Ki should be satisfied, this minimal
behaviour would be the local lower bound, meaning Li ⊆ Si

should hold. We then use this information on our procedure,
by ceasing to explore a combination of decisions that lead to
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Procedure 4 CBSS
Require: Automata S0

1 and S0
2. Optional: Trim automata L1 and L2

(otherwise they are such that L1 = L2 = {ϵ}).
1: (S1,S2,C1,C2)← NEGOTIATION(S0

1,S
0
2)

2: v ← (CHECKLB(S1) and CHECKLB(S2))
3: if ¬v then return (S1,S2, v)
4: b← (TEST⊥(S1) or TEST⊥(S2))
5: if b then t← DECIDE() else t← False
6: if t then
7: (Ŝ1, Ŝ2, v)← NEXTTREATRESIDUAL(S1,S2,C1,C2)
8: if ¬v then
9: (Ŝ1, Ŝ2, v, c)← NEXTENFORCERU(S1,S2)

10: if ¬c then v ← False
11: else
12: (Ŝ1, Ŝ2, v, c)← NEXTENFORCERU(S1,S2)
13: if b and (v xor c) then
14: (Ŝ1, Ŝ2, v)← NEXTTREATRESIDUAL(S1,S2,C1,C2)

15: return (Ŝ1, Ŝ2, v)

16: procedure NEXTTREATRESIDUAL(S0
1,S

0
2,C1,C2)

17: S1 ← TREATRESIDUAL(S0
1,C1,C2)

18: (S1,S2, v)← NEWBRANCH(S1,S0
2)

19: if ¬v then
20: S2 ← TREATRESIDUAL(S0

2,C1,C2)
21: (S1,S2, v)← NEWBRANCH(S0

1,S2)

22: return (S1,S2, v)

23: procedure NEXTENFORCERU(S0
1,S

0
2)

24: (S1, c1)← ENFORCERU(S0
1,Σ

s)
25: (S2, c2)← ENFORCERU(S0

2,Σ
s)

26: v ← True and c← (c1 or c2)
27: if c then (S1,S2, v)← NEWBRANCH(S1,S2)
28: return (S1,S2, v, c)

29: procedure NEWBRANCH(S0
1,S

0
2)

30: S1 ← S0
1 and S2 ← S0

2
31: v ← (CHECKLB(S1) and CHECKLB(S2))
32: if v then (S1,S2, v)← CBSS(S1,S2)
33: return (S1,S2, v)

the lower bound specification to be disrespected, and trying
the next combination. In Proc. 4, this is done by the function
CHECKLB, which returns true iff Li ⊆ Si; the boolean v that
stores this information stands for valid.

The execution of CBSS is illustrated by the tree in Fig. 10.
This multiple recursive procedure explores the options in a
depth-first-search manner. The particularity here is that we
cannot know a priori the depth of each branch; besides, this
depth is variable from branch to branch, i.e., from the root
to a leaf in the tree, the depth depends on previous decisions
taken to reach that particular leaf. These leaves represent nodes
where the search is interrupted either due to a violation of
the specification Li – i.e., when v is false – or when the
procedure finally finds a pair of trim automata Si as desired,
that is, compatible with equivalent contracts, satisfying relative
unambiguity and respecting Li.

Initially, as in Fig. 9, CBSS calls NEGOTIATION, and then
checks whether its outputs are trim. This check is done by
TEST⊥, which returns true iff ⊥ is a state in its inputs; b
(line 4) stands for blocking. If b is true, the function DECIDE
chooses – randomly or using any kind of heuristics – whether
or not to prioritise TREATRESIDUAL over ENFORCERU–
that is, it decides which function to call next; t stands for
trimming ⊥. If b is false, as discussed before, there is no
choice and ENFORCERU, not TREATRESIDUAL, should be

Input: (K1,K2)

1 [n]

2 [r,1]

3 [n]

4 [ru]

5 [n]

6 [r,1] 7 [ru] 8 [r,2]

9 [r,1]

10 [n]

11 [r,2]

12 [r,2]

13 [n]

14 [ru]

15 [ru]

16 [n]

17 [ru]

Output:
(S1,S2, true)

Fig. 10. Tree illustrating the search by CBSS, from Proc. 4. The
number next to each node represents the order in which the procedure
explores different combinations of decisions. The letters n, r, and
ru denote, respectively, the execution of the functions NEGOTIATION,
TREATRESIDUAL, and ENFORCERU.

called. Based on this choice, either NEXTTREATRESIDUAL
or NEXTENFORCERU call NEWBRANCH, which then starts a
new recursion. When a leaf – as described in the preceding
paragraph – is reached, the search on that branch stops.
The outputs of both NEWBRANCH and CBSS are a pair of
automata Si and the boolean v. A call of one of these functions
return v as true if and only if Si are as desired; in this case,
v and Si are returned through all the recursions till the first
call of CBSS. If the returned v is false and there are still
new combinations of decisions to be searched, a new branch
– i.e., a new recursion – is started; otherwise, the recursion
ends without the desired automata being found, and the first
call of CBSS returns v as false.

Finally, by combining multiple previous results, we have
the following soundness result of Proc. 4. It is the main
implication of this section, for it shows that, if found, the fully
local supervisors impose a globally nonblocking closed-loop
behaviour that respects given local specifications.

Theorem 2: Consider a plant composed of two subsystems
Mi with plantified specifications Ki, as in Sec. III-A. Let
(S1,S2, v) = CBSS(K1, K2). If v is true, let fi be the local
supervisors defined from Si via Def. 5. Then, it holds that

1) Lm(f1/M1) ∥ Lm(f2/M2) ∈ C(K1 ∥ K2), and
2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

where controllability is taken with respect to L(M1 ∥ M2)
and Σp

1,uc ∪ Σp
2,uc ∪ Σs

uc. □
Although we may need to sacrifice maximal permissiveness

in order to respect privacy, our last theorem shows that in
certain cases we can guarantee this trait is still preserved.

Theorem 3: Let Mi and Ki be subsystems and their plan-
tified specifications, as in Sec. III-A, and (S1,S2,C1,C2) =
NEGOTIATION(K1,K2). If Si are trim automata, with Si

unambiguous as stated in Def. 6, and if fi is defined from
Si via Def. 5, we have that

1) Lm(f1/M1) ∥ Lm(f2/M2) = supC(K1 ∥ K2), and
2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

where controllability is taken as in Thm. 2. □
Remark 9: It is unclear whether NEGOTIATION from

Proc. 1 and, consequently, CBSS from Proc. 4 always termi-
nate. The combination of PCSYNTH with the extraction and
exchange of contracts Ci during NEGOTIATION may cause an
increase of the size of the automata Si from one round to the
next – where each round starts at line 5 in Proc. 1. We then
cannot use as argument for the termination of these procedures
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the monotonicity of the size of the automata they manipulate.
While this leaves a (non)termination proof for future work, we
remark that we were not able to construct a counterexample
for the termination of NEGOTIATION and CBSS. Moreover, as
discussed in the next section, both these procedures terminated
on all the performed experiments. Finally, we remark that the
complexity on each round of NEGOTIATION and CBSS is
dominated by the computation of the observer automata, which
in the worst case is exponential in the size of the automata
Si. These observers are required in Proc. 1 for the contract
extraction and in Proc. 3, used by Proc. 4, for the check and
possible enforcement of relative unambiguity. □

VII. EXPERIMENTAL RESULTS

We demonstrate the suitability of our framework by eval-
uating our approach over randomly generated plants. We
implemented Proc. 4 for CBSS – including Proc. 1 for
NEGOTIATION and all the other procedures here presented –
in the tool Supremica [20]. For the generation of random
examples, we used the tool MDESops [21].

We present in Table I the results of running CBSS over
8 different cases corresponding to the columns of the table
(except for the first). For each case, we randomly generated
100 examples, i.e., 100 plants composed of 2 subsystems each.
The number of states in the table is given per subsystem; thus,
for example, cases with 1000 states per subsystem correspond
to plants that could reach a million states. Row (1) shows the
average runtime for CBSS taken from 100 examples. Row (2)
shows the percentage of examples for which CBSS returned
nonempty solutions. Rows (3) to (8) show the average of
the following data taken among the examples that returned
nonempty solutions: (3) runtime for CBSS; (4) and (5) average
number of states per supervisor Si and contract Ci outputted
by CBSS, respectively; (6) number of NEGOTIATION calls
during CBSS; (7) average runtime per NEGOTIATION call;
(8) average number of rounds exchanging contracts per NE-
GOTIATION call. Runtimes are shown in milliseconds (ms).

For all the examples considered in this experiment, the
supervisors outputted by the first call of NEGOTIATION did not
satisfy relative unambiguity. When we increase the number of
shared events between the subsystems, this property becomes
stronger, and because it is not immediately satisfied after
NEGOTIATION, it needs to be enforced, which leads to a
higher number of empty solutions. Finally, we remark that
our procedure terminated on all our experiments.

VIII. CONCLUSION

In this paper, we address the problem of finding local
decentralised supervisors for a distributed plant composed of
two subsystems that synchronise over shared events, while
preserving privacy with respect to events that are local but
nonshared, regarded as private. We consider the controllability
of the shared events may not be the same in both subsystems,
and that they have their own local specifications to be satisfied.

The distinctive aspect of our method, if compared to other
distributed and decentralised approaches, is privacy, as we
consider the problem of partial observation not only during the

Number of States per Subsystem
50 200 1000
Number of shared events / Size of each local alphabet Σi

3/15 5/15 3/15 5/15 4/20 5/20 6/20 7/20
(1) 69 84 999 1132 45202 86545 50043 86955
(2) 91 72 66 33 78 58 38 12
(3) 71 86 1098 1515 47347 76271 59395 65708
(4) 47 51 186 167 922 900 845 789
(5) 1 1 1 1 1 1 1 1
(6) 2 2 3 3 3 3 3 3
(7) 25 24 234 252 9008 8356 9408 9931
(8) 2 2 2 2 2 2 2 2

TABLE I
DATA OBTAINED FROM RUNNING CBSS FOR 100 RANDOMLY

GENERATED EXAMPLES PER CASE (COLUMNS).

execution of the supervisors, but also during their synthesis.
Privacy is respected for the following reasons. During syn-
thesis, no information about private events is shared between
the subsystems: the contracts negotiated between them are
represented solely in terms of the events they share, and
further refinements applied in the supervisors are done fully
locally. As a consequence, we highlight that, apart from
what is expressed in the contracts, the complete model of
each subsystem remains unknown to the other subsystem.
Moreover, once the desired supervisors are found, they can
be executed in parallel without the need of a coordinator to
solve conflicts, nor the communication of private events –
which differs from the use of signalling bits proposed here
for the case where the supervisors have different controllability
settings over shared events, as discussed in Rem. 6.

Our approach is sound, as we prove that the composition
of the subsystems in closed-loop with their local supervisors
enforces a nonblocking behaviour that satisfies the local spec-
ifications (Thm. 2). It is not complete, since the problem of
synthesising local, decentralised supervisors is known to be
undecidable [22], [23]. This is due to partial observation:
even though, in our setting, a supervisor can observe all
its local events, it cannot observe private events from the
other subsystem it synchronises with. In particular, maximal
permissiveness can not always be achieved. Yet for the cases
our approach returns nonempty solutions, we can identify
when they are provenly maximally permissive (Thm. 3).

We restrict our attention to systems composed of only
two processes. Although this imposes a limitation to our
framework, it has been applied in [24] for the synthesis of
two stealthy sensor and actuator attackers that cooperate in
achieving their goals, while requiring some privacy in terms
of their local behaviour. Moreover, we are currently working
on expanding our approach for multiple processes. This is
not a trivial task, as the way the processes are connected
among themselves in terms of the events they share impacts:
(i) how they should be composed into groups to negotiate
contracts; (ii) over which observers the local property for
nonconflict, namely relatively unambiguity, should be checked
and enforced; (iii) whether or not groups require a somewhat-
local coordinator among themselves to prevent conflict, on
top of the negotiated contracts and local properties; and (iv)
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privacy, as a consequence of all the aspects listed above.

APPENDIX I
PROOFS

For the proofs, and for an automaton Λ over Σ, we adopt the
notation supCΛ,Σu to indicate that controllability is taken with
respect to L(Λ), and to an uncontrollable alphabet Σu ⊆ Σ.

Supplementary Remark 1: For automata M and Λ over Σ
such that Λ ⊆ L(M), and for Σ′

uc ⊆ Σuc ⊆ Σ, we have that
supCM,Σuc

(Λ) ⊆ supCM,Σ′
uc
(Λ).

Remark 2. If Ki is a plantified specification for the sub-
system Mi, and Si = PCSYNTH(Ki), then we have that
Si = supC(Ki) with respect to L(Mi) and Σp

i,uc. Moreover, if
we take controllability with respect to L(Mi) and Σp

i,uc∪Σs
uc,

then supC(Si) = supC(Ki).
Rem. 2 follows from the definition of PCSYNTH, and from

Rem. 1 and Sup. Rem. 1.
Supplementary Remark 2: Let S0

i be any pair of automata
that satisfies requirements (1) and (2) from Cond. 1. Then
supCMi,Σ

p
i,uc

(S0
i ) = supCS0

i ,Σ
p
i,uc

(S0
i ).

Supplementary Remark 3: Let S0
i be any pair of automata

that satisfies Cond. 1. Then, for Si = PCSYNTH(S0
i ), we have

that the pair (S1,S2) also satisfies Cond. 1.
Its is straightforward to prove Sup. Rem. 3 by considering

Cond. 1, the definition of PCSYNTH, and Sup. Rem. 2.
Supplementary Remark 4: Let S0

i be any pair of automata
that satisfies Cond. 1. Then, for Si = S0

i ∥ OS0
j ,Σ

s and i, j ∈
{1, 2}, with i ̸= j, we have that (S1,S2) also satisfies Cond. 1.

Supplementary Remark 5: Suppose that a pair of automata
S0
i satisfying Cond. 1 is given as input for NEGOTIATION.

Denote by S′
i,k the automaton S′

i in Proc. 1 at the beginning
of each round k ≥ 1, which we consider to be at line 5. Then,
we have that (S′

1,k,S
′
2,k) also satisfies Cond. 1 for all k ≥ 1.

From Sup. Rem. 3 and 4, it is straightforward to show by
induction Sup. Rem. 5.

Lemma 1. Let S0
i be any pair of automata that satisfies

Cond. 1, and Si be the outputs of Proc. 1 with S0
i as its inputs,

namely, (S1,S2,C1,C2) = NEGOTIATION(S0
1,S

0
2). Then the

pair Si also satisfies Cond. 1, and both automata are compliant
with the contracts Ci, which are equivalent.

Proof:
The fixed point of NEGOTIATION is reached when cond =

False, which occurs when Si = Si ∥ OSj ,Σs for all
i, with j ̸= i. By Sup. Rem. 5, it then follows that
(S1,S2) satisfies Cond. 1. Moreover, we also have that
Pis(Si) ⊆ Pjs(Sj). Thus, P1s(S1) = P2s(S2); analogously,
P1s(L(S1)) = P2s(L(S2)). Hence, C1 is equivalent to C2,
and Si are compliant with these contracts.

Supplementary Remark 6: Given languages A,B and C =
C over Σ = Σc∪̇Σuc such that A,B ⊆ C, we have that

supC(A) ⊆ B ⇔ supC(A) ⊆ supC(B) ,

where controllability is taken with respect to Σuc and C.
Supplementary Lemma 1: In the context of the plant de-

fined in Sec. III-A, and for any languages Λi over Σi such
that Λi ⊆ Ki, i ∈ {1, 2}, we have that

Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
⊆ supCMi,Σ

p
i,uc

(Λi),

where we denote by Pi the projection Pi : (Σ1 ∪Σ2)
∗ → Σ∗

i ,
the global plant by M = M1 ∥ M2, and by Σp

uc the alphabet
Σp

1,uc∪̇Σp
2,uc.

Proof:
(i) supCM,Σp

uc
(Λ1 ∥ Λ2) ⊆ Λ1 ∥ Λ2, so supCM,Σp

uc
(Λ1 ∥

Λ2) ⊆ P−1
i (Λi) ⇒ Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
⊆ Λi.

(ii) By the definition of supC and controllability, we have
that, for all u ∈ supCM,Σp

uc
(Λ1 ∥ Λ2) and σ ∈ Σp

uc, if
uσ ∈ L(M), then uσ ∈ supCM,Σp

uc
(Λ1 ∥ Λ2). Besides, Pi(u)

∈ Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
= Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
, and

u ∈ L(M), because supCM,Σp
uc
(Λ1 ∥ Λ2) ⊆ K1 ∥ K2 ⊆

L(M), which is prefix-closed by definition. Note that σ ∈
Σp

i,uc for some i, that is, σ is a local event and hence
σ /∈ Σj for j ̸= i; then Pi(u)σ ∈ L(Mi) ⇔ uσ ∈
L(M). Now, by the definition of supCM,Σp

uc
(Λ1 ∥ Λ2), we

have that Pi(u)σ ∈ L(Mi) ⇔ uσ ∈ L(M) ⇒ uσ ∈
supCM,Σp

uc
(Λ1 ∥ Λ2) ⇒ Pi(u)σ ∈ Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
,

implying Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
is controllable with respect

to L(Mi) and Σp
i,uc.

From (i) and (ii), we have that Pi

(
supCM,Σp

uc
(Λ1 ∥ Λ2)

)
⊆

supCMi,Σ
p
i,uc

(Λi).
Theorem 1. In the context of Lem. 1, we have that

supC(S1 ∥ S2) = supC(S0
1 ∥ S0

2), where supC is taken with
respect to L(M1 ∥ M2) and Σp

1,uc ∪ Σp
2,uc ∪ Σs

uc.
Proof:

(⇒) From Sup. Rem. 5, we have that S1 ∥ S2 ⊆ S0
1 ∥ S0

2 ;
thus, supC(S1 ∥ S2) ⊆ supC(S0

1 ∥ S0
2).

(⇐) Let us denote Σp
1,uc∪̇Σp

2,uc by Σp
uc. From Sup. Rem. 5,

we have that (S′
1,k,S

′
2,k) satisfies Cond. 1, for all k ≥ 1. As

S0
i are the inputs for NEGOTIATION, define S′

i,0 = S0
i ; thus,

(S′
1,0,S

′
2,0) satisfies Cond. 1 as well. We can, then, apply Sup.

Rem. 2, together with the definition of PCSYNTH, to write:
S′
1,k ∥ S′

2,k

= supCM1,Σ
p
1,uc

(S′
1,k−1) ∥ P2s(supCM2,Σ

p
2,uc

(S′
2,k−1)) ∥

supCM2,Σ
p
2,uc

(S′
2,k−1) ∥ P1s(supCM1,Σ

p
1,uc

(S′
1,k−1))

= supCM1,Σ
p
1,uc

(S′
1,k−1) ∥ supCM2,Σ

p
2,uc

(S′
2,k−1)

⊇ supCM,Σp
uc
(S′

1,k−1 ∥ S′
2,k−1) . (by Sup. Lem. 1)

⊇ supCM,Σp
uc∪Σs

uc
(S′

1,k−1 ∥ S′
2,k−1) . (by Sup. Rem. 1).

Then, from Sup. Rem. 6, we have that
supCM,Σp

uc∪Σs
uc
(S′

1,k−1 ∥ S′
2,k−1) ⊆ supCM,Σp

uc∪Σs
uc
(S′

1,k ∥
S′
2,k). Since this is valid for all k ≥ 1, if follows that

supCM,Σp
uc∪Σs

uc
(S0

1 ∥ S0
2) ⊆ supCM,Σp

uc∪Σs
uc
(S′

1,k ∥ S′
2,k).

Finally, as the fixed point Si = S′
1,k̃

for some k̃ ≥ 1, we
conclude that supC(S0

1 ∥ S0
2) ⊆ supC(S1 ∥ S2).

Corollary 1. Given the premisses of Lem. 1, if Si are trim
automata and S1 and S2 are nonconflicting, we have that S1 ∥
S2 = supC(S0

1 ∥ S0
2), where supC is taken with respect to

L(M1 ∥ M2) and Σp
1,uc ∪ Σp

2,uc ∪ Σs
uc.

Proof:
Each language Si is controllable with respect to L(Mi) and

Σp
i,uc, because Si is the output of the last call of the PCSYNTH

function during NEGOTIATION, and by Sup. Rem. 2 and 5.
We assume automata Si to be nonblocking, so, by PCSYNTH
definition, and since the blocking state ⊥ is not present, we
have that Si is also controllable with respect to Σs

uc. Now, let
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us denote by S the composition S1 ∥ S2. The languages S1 and
S2 are nonconflicting, so S = S1 ∥ S2. The synchronisation
in S1 ∥ S2 only occurs over shared events, which are either
in Σs

uc or are considered globally controllable; thus, it is
straightforward to show that S is controllable with respect to
L(M1 ∥ M2) and Σp

1,uc ∪ Σp
2,uc ∪ Σs

uc. Then, for there is no
language L such that S ⊂ L ⊆ S, we have that S = supC(S).
Finally, by Thm. 1, it follows that S = supC(S0

1 ∥ S0
2).

Lemma 2. In the context of Def. 5, we have that
1) Lm(f1/M1) ∥ Lm(f2/M2) = S1 ∥ S2 and
2) L(f1/M1) ∥ L(f2/M2) = S1 ∥ S2.

Proof:
Denote L(f1/M1) ∥ L(f2/M2) by L, and Σ1 ∪ Σ2 by Σ.
(a) S1 ∥ S2 ⊆ L(f1/M1) ∥ L(f2/M2):
If there exists i ∈ {1, 2} such that Si = ∅, then S1 ∥ S2 = ∅

and it trivially holds. Consider then Si ̸= ∅ for all i ∈ {1, 2}.
Then, ϵ ∈ S1 ∥ S2, and ϵ ∈ L by definition of L(fi/Mi).

Let us say S1 ∥ S2 ⊃ {ϵ} and prove that s ∈ L for any
s ∈ S1 ∥ S2. This proof is by induction over the length of
s. Note that Si ⊆ L(Mi), so s ∈ L(M1) ∥ L(M2), i.e.,
Pi(s) ∈ L(Mi) for all i.

For length 0 (s = ϵ), it holds. Assume it holds for some s =
w > ϵ, and denote Pi(w) ∈ Si by wi for all i. Then, for any
σ ∈ Σ, take s = wσ. If σ ∈ Σp

i for some i, then wiσ ∈ Si and
σ ̸∈ Σs

j,cp, so by definition of fi, wiσ ∈ L(fi/Mi); moreover,
Pj(σ) = ϵ; thus, wσ ∈ L. If σ ∈ Σs\(Σs

1,cp ∪Σs
2,cp), then by

definition of fi and for all i, we have that wiσ ∈ L(fi/Mi);
hence, s ∈ L. If σ ∈ Σs

i,cp for some i, then dσ ̸∈ di(wi), so
σ ∈ fj

(
wj , di(wi)

)
; thus, s ∈ L.

(b) L(f1/M1) ∥ L(f2/M2) ⊆ S1 ∥ S2:
By definition of L(fi/Mi) and fi, we have that L ̸= ∅.

Thus, ϵ ∈ L, and we know ϵ ∈ S1 ∥ S2. Let us say S1 ∥ S2 ⊃
{ϵ} and, for any s ∈ L, prove by induction over the length of
s that s ∈ S1 ∥ S2.

For length 0 (s = ϵ), it holds. Assume it holds for some
s = w > ϵ, and denote Pi(w) ∈ L(fi/Mi) by wi for all i.
Then, for any σ ∈ Σ, take s = wσ. If σ ∈ Σp

i for some i, then
wiσ ∈ Si by definition of fi, and since Pj(σ) = ϵ, we have
that s ∈ S1 ∥ S2. If σ ∈ Σs\(Σs

1,cp∪Σs
2,cp), then by definition

of fi and for all i, we have that wiσ ∈ Si; hence, s ∈ S1 ∥ S2.
If σ ∈ Σs

i,cp for some i: suppose wiσ ̸∈ Si; then dσ ∈ di(wi),
so σ ̸∈ fj

(
wj , di(wi)

)
⇒ wjσ ̸∈ L(fj/Mj) ⇒ wσ ̸∈ L,

which is a contraction; thus, wiσ ∈ Si and dσ ̸∈ di(wi) ⇒
wjσ ∈ Sj . Hence, s ∈ S1 ∥ S2.

(c) S1 ∥ S2 ⊆ Lm(f1/M1) ∥ Lm(f2/M2):
This result follows immediately from (a) and from the

definition of Lm(fi/Mi).
(d) Lm(f1/M1) ∥ Lm(f2/M2) ⊆ S1 ∥ S2:
This result follows immediately from (b) and from the fact

that Si are relatively closed with respect to Lm(Mi).
Corollary 2. The global behaviour of the plant in closed

loop with the supervisors fi from Def. 5 is nonblocking, that
is, L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2), if
and only if S1 and S2 are nonconflicting.

Proof:
It follows from the definition of conflict and Lem. 2.
Proposition 1. For automata S1 and S2 as in Lem. 1, if

they are trim, and if their marked languages S1 and S2 are

unambiguous with respect to Σs and the natural projection
Pis : Σ

∗
i → Σs∗, then these languages are nonconflicting.

Proof:
For any language Si, it is always true (and trivial to show)

that S1 ∥ S2 ⊆ S1 ∥ S2. Let us then prove the other direction,
i.e., that S1 ∥ S2 ⊆ S1 ∥ S2. Once more, we use the definitions
of Pi and Ps as in the proof of Lemma 2.

Let t be any string in S1 ∥ S2 = P−1
1 (S1)∩P−1

2 (S2). Then,
for any i ∈ {1, 2} there exists ui ∈ Σ∗

i such that tiui ∈ Si,
where ti = Pi(t). If P1s(u1) = P2s(u2) = ϵ, take w ∈ Σ∗

such that w = u1u2. Then, Pi(tw) = tiui ∈ Si, so tw ∈ S1 ∥
S2 and hence t ∈ S1 ∥ S2.

Else, there is i such that Pis(ui) ̸= ϵ. Now, because
P1s(S1) = P2s(S2), there exist t̂j and ûj such that Pjs(t̂j) =
Pis(ti), Pjs(ûj) = Pis(ui), and t̂j ûj ∈ Sj (note that we
might have t̂j ̸= tj = Pj(t)). Thus, in summary, we have that
tj ∈ Sj (from the initial assumption), t̂j ∈ Sj , and Pjs(t̂j) =
[Pis(ti) = Ps(t) =]Pjs(tj). Because Pjs(ûj) = Pis(ui) ̸= ϵ,
there exist α ∈ Σs and v̂j < ûj such that Pjs(v̂j) = ϵ and
v̂jα ≤ ûj . Then, t̂j v̂j ∈ Sj , Pjs(t̂j v̂j) = [Pjs(t̂j) =]Pjs(tj),
and t̂j v̂jα ∈ Sj . Therefore, by the condition in Def. 6.1 we
have that there exists vj ∈ (Σp

j )
∗ such that tjvjα ∈ Sj . Note

that, since Pjs(ûj) ̸= ϵ, there exist λ ∈ Σs and v′j ∈ Σ∗
j such

that
(
v′jλ ≤ ûj and Pjs(v

′
jλ) = Pjs(ûj)

)
(∗), i.e., there is an

event λ which is the last shared event that occurs in ûj . It may
also be that v′j = v̂j and λ = α. Nonetheless, if Pjs(ûj) ̸= α
— i.e., v̂j < v′j — note that we can reapply the same argument
as before (where we use the unambiguity property) as many
times as the length of Pjs(ûj) minus 1 — i.e., in total, we
apply the condition from Def. 6.1 as many times as there
are shared events in ui (or, equivalently, in ûj). This implies
that there exists ṽj ∈ Σ∗

j such that Pjs(ṽj) = Pjs(v
′
j) and

tj ṽjλ ∈ Sj . From (∗), we have that there exists w′ ∈ (Σp
j )

∗

such that v′jλw
′ = ûj , which implies t̂jv

′
jλw

′ = t̂j ûj ∈ Sj .
But Pjs(t̂jv

′
jλw

′) = Pjs(t̂jv
′
jλ) = Pjs(tj ṽjλ); thus, by the

condition in Def. 6.2 there exists w ∈ (Σp
j )

∗ such that
tj ṽjλw ∈ Sj , implying Pjs(ṽjλw) = Pjs(v

′
jλ) = Pjs(ûj) =

Pis(ui), so P−1
i (ui)∩P−1

j (ṽjλw) ̸= ∅ and hence there exists
u ∈ Σ∗ such that Pi(u) = ui and Pj(u) = ṽjλw. Then, we
have Pi(tu) = tiui ∈ Si and Pj(tu) = Pj(tj ṽjλw) ∈ Sj ,
which implies tu ∈ S1 ∥ S2 and so t ∈ S1 ∥ S2.

Supplementary Remark 7: Suppose that a pair of automata
S0
i satisfying Cond. 1 is given as input for CBSS. Then, for

the automata denoted by Si and Ŝi at any line of Proc. 4, we
have that the pairs (S1,S2) and (Ŝ1, Ŝ2) satisfy Cond. 1.

Sup. Rem. 7 follows from Lem. 1, and Rem. 5 and 7.
Theorem 2. Consider a plant composed of two subsystems

Mi with plantified specifications Ki, as in Sec. III-A. Let
(S1,S2, v) = CBSS(K1, K2). If v is true, let fi be the local
supervisors defined from Si via Def. 5. Then, it holds that

1) Lm(f1/M1) ∥ Lm(f2/M2) ∈ C(K1 ∥ K2), and
2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

where controllability is taken with respect to L(M1 ∥ M2)
and Σp

1,uc ∪ Σp
2,uc ∪ Σs

uc.
Proof:

First note the following two facts, so we can apply previous
results from this paper. Firstly, the output of CBSS is also the
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output of its last call of NEGOTIATION. Secondly, as (K1,K2)
satisfies Cond. 1 (Rem. 3), we can apply Sup. Rem. 7; so,
for example, we have that the pair of automata outputted by
CBSS(K1,K2) also satisfies this condition.

Thanks to TREATRESIDUAL and ENFORCERU, the au-
tomata outputted by CBSS are (i) trim, and its marked lan-
guages are (ii) unambiguous as stated in Def. 6. From (i) and
(ii), by Prop. 1 we get that S1 and S2 are nonconflicting. This
proves (2) by Cor. 2. Moreover, from nonconflict and (i), by
Cor. 1 and Sup. Rem. 7 we get that S1 ∥ S2 = supC(S̃1 ∥ S̃2),
where automata S̃i are a pair that satisfies Cond. 1 and such
that S̃i ⊆ Ki. Thus, we have that supC(S̃1 ∥ S̃2) ⊆ supC(K1 ∥
K2), so S1 ∥ S2 ∈ C(K1 ∥ K2). Finally, from (i) and Sup.
Rem. 7, we can apply Lem. 2, which proves (1).

Theorem 3. Let Mi and Ki be subsystems and their plan-
tified specifications, as in Sec. III-A, and (S1,S2,C1,C2) =
NEGOTIATION(K1,K2). If Si are trim automata, with Si

unambiguous as stated in Def. 6, and if fi is defined from
Si via Def. 5, we have that

1) Lm(f1/M1) ∥ Lm(f2/M2) = supC(K1 ∥ K2), and
2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

where controllability is taken with respect to L(M1 ∥ M2)
and Σp

1,uc ∪ Σp
2,uc ∪ Σs

uc.
Proof:

The assumption is that the automata Si are (i) trim, and that
its marked languages are (ii) unambiguous as stated in Def. 6.

By Lem. 1 and Rem. 3, we have that the pair of automata
Si satisfies Cond. 1. This, in addition to (i) and (ii), implies
by Prop. 1 that S1 and S2 are nonconflicting, which proves
(2) by Cor. 2. Moreover, from nonconflict and (i), by Cor. 1
we get that S1 ∥ S2 = supC(K1 ∥ K2). Finally, from (i), we
can apply Lem. 2, which proves (1).
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